

Data Structures & Algorithms

i

About the Tutorial

Data Structures are the programmatic way of storing data so that data can be used

efficiently. Almost every enterprise application uses various types of data structures in one

or the other way.

This tutorial will give you a great understanding on Data Structures needed to understand

the complexity of enterprise level applications and need of algorithms, and data structures.

Audience

This tutorial is designed for Computer Science graduates as well as Software Professionals

who are willing to learn data structures and algorithm programming in simple and easy

steps.

After completing this tutorial you will be at intermediate level of expertise from where you

can take yourself to higher level of expertise.

Prerequisites

Before proceeding with this tutorial, you should have a basic understanding of C

programming language, text editor, and execution of programs, etc.

Copyright and Disclaimer

© Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Data Structures & Algorithms

ii

Compile & Execute Online

For most of the examples given in this tutorial you will find Try it option, so just make use

of this option to execute your programs on the spot and enjoy your learning.

Try the following example using the Try it option available at the top right corner of the

following sample code box −

#include <stdio.h>

int main(){

 /* My first program in C */

 printf("Hello, World! \n");

 return 0;

}

Data Structures & Algorithms

iii

Table of Contents

About the Tutorial .. i
Audience ... i
Prerequisites ... i
Copyright and Disclaimer ... i
Compile & Execute Online ... ii
Table of Contents ... iii

BASICS ... 1

1. Overview .. 2
Characteristics of a Data Structure .. 2
Need for Data Structure .. 2
Execution Time Cases .. 3
Basic Terminology ... 3

2. Environment Setup ... 4
Try it Option Online ... 4
Local Environment Setup ... 4
Installation on UNIX/Linux ... 5
Installation on Mac OS... 5
Installation on Windows .. 6

ALGORITHM .. 7

3. Algorithms ─ Basics ... 8
Characteristics of an Algorithm ... 8
How to Write an Algorithm? ... 9
Algorithm Analysis ... 10
Algorithm Complexity .. 11
Space Complexity .. 11
Time Complexity .. 11

4. Asymptotic Analysis .. 12
Asymptotic Notations .. 12
Common Asymptotic Notations .. 15

5. Greedy Algorithms .. 16
Counting Coins ... 16

6. Divide & Conquer .. 18
Divide/Break .. 18
Conquer/Solve ... 18
Merge/Combine .. 19

7. Dynamic Programming .. 20

Data Structures & Algorithms

iv

DATA STRUCTURES ... 21

8. Basic Concepts .. 22
Data Definition .. 22
Data Object .. 22
Data Type ... 22
Basic Operations .. 23

9. Arrays ... 24
Array Representation .. 24
Basic Operations .. 25
Insertion Operation ... 25
Array Insertions ... 27
Insertion at the Beginning of an Array .. 28
Insertion at the Given Index of an Array ... 30
Insertion After the Given Index of an Array .. 32
Insertion Before the Given Index of an Array .. 34
Deletion Operation .. 36
Search Operation ... 37
Update Operation .. 39

LINKED LIST ... 41

10. Linked List ─ Basics .. 42
Linked List Representation .. 42
Types of Linked List ... 42
Basic Operations .. 43
Insertion Operation ... 43
Deletion Operation .. 44
Reverse Operation ... 45
Linked List Program in C .. 46

11. Doubly Linked List ... 55
Doubly Linked List Representation .. 55
Basic Operations .. 55
Insertion Operation ... 56
Deletion Operation .. 57
Insertion at the End of an Operation ... 57
Doubly Linked List Program in C .. 58

12. Circular Linked List .. 67
Singly Linked List as Circular .. 67
Doubly Linked List as Circular .. 67
Basic Operations .. 67
Insertion Operation ... 68
Deletion Operation .. 68
Display List Operation .. 69
Circular Linked List Program in C ... 69

Data Structures & Algorithms

v

STACK & QUEUE .. 74

13. Stack ... 75
Stack Representation... 75
Basic Operations .. 76
peek() ... 76
isfull() ... 77
isempty() .. 77
Push Operation .. 78
Pop Operation ... 79
Stack Program in C ... 81

14. Expression Parsing .. 84
Infix Notation ... 84
Prefix Notation .. 84
Postfix Notation ... 84
Parsing Expressions ... 85
Postfix Evaluation Algorithm ... 86
Expression Parsing Using Stack .. 86

15. Queue ... 92
Queue Representation .. 92
Basic Operations .. 92
peek() ... 93
isfull() ... 93
isempty() .. 94
Enqueue Operation ... 95
Dequeue Operation ... 96
Queue Program in C .. 98

SEARCHING TECHNIQUES .. 102

16. Linear Search .. 103
Linear Search Program in C ... 104

17. Binary Search .. 107
How Binary Search Works? ... 107
Binary Search Program in C ... 110

18. Interpolation Search ... 113
Positioning in Binary Search .. 113
Position Probing in Interpolation Search ... 114
Interpolation Search Program in C .. 116

19. Hash Table .. 118
Hashing .. 118
Linear Probing.. 119
Basic Operations .. 120
Data Item ... 120

Data Structures & Algorithms

vi

Hash Method ... 120
Search Operation ... 120
Insert Operation .. 121
Delete Operation ... 122
Hash Table Program in C ... 123

SORTING TECHNIQUES .. 128

20. Sorting Algorithm .. 129
In-place Sorting and Not-in-place Sorting ... 129
Stable and Not Stable Sorting .. 129
Adaptive and Non-Adaptive Sorting Algorithm ... 130
Important Terms.. 130

21. Bubble Sort Algorithm .. 132
How Bubble Sort Works? ... 132
Bubble Sort Program in C .. 136

22. Insertion Sort .. 140
How Insertion Sort Works? ... 140
Insertion Sort Program in C ... 143

23. Selection Sort .. 147
How Selection Sort Works? ... 147
Selection Sort Program in C ... 150

24. Merge Sort Algorithm ... 153
How Merge Sort Works? ... 153
Merge Sort Program in C ... 156

25. Shell Sort .. 158
How Shell Sort Works? .. 158
Shell Sort Program in C .. 162

26. Quick Sort ... 166
Partition in Quick Sort ... 166
Quick Sort Pivot Algorithm .. 166
Quick Sort Pivot Pseudocode .. 167
Quick Sort Algorithm ... 167
Quick Sort Pseudocode .. 168
Quick Sort Program in C .. 168

GRAPH DATA STRUCTURE ... 172

27. Graphs .. 173
Graph Data Structure .. 173
Basic Operations .. 175

Data Structures & Algorithms

vii

28. Depth First Traversal ... 176
Depth First Traversal in C .. 179

29. Breadth First Traversal .. 184
Breadth First Traversal in C ... 186

TREE DATA STRUCTURE .. 192

30. Tree .. 193
Important Terms.. 193
Binary Search Tree Representation ... 194
Tree Node .. 194
BST Basic Operations ... 195
Insert Operation .. 195
Search Operation ... 197
Tree Traversal in C ... 198

31. Tree Traversal ... 204
In-order Traversal .. 204
Pre-order Traversal .. 205
Post-order Traversal .. 206
Tree Traversal in C ... 207

32. Binary Search Tree .. 213
Representation .. 213
Basic Operations .. 214
Node .. 214
Search Operation ... 214
Insert Operation .. 215

33. AVL Trees .. 217
AVL Rotations .. 218

34. Spanning Tree ... 222
General Properties of Spanning Tree .. 222
Mathematical Properties of Spanning Tree ... 223
Application of Spanning Tree .. 223
Minimum Spanning Tree (MST) ... 223
Minimum Spanning-Tree Algorithm .. 223
Kruskal's Spanning Tree Algorithm .. 224
Prim's Spanning Tree Algorithm .. 227

35. Heaps .. 231
Max Heap Construction Algorithm .. 232
Max Heap Deletion Algorithm ... 233

RECURSION ... 234

Data Structures & Algorithms

viii

36. Recursion ─ Basics ... 235
Properties .. 235
Implementation ... 236
Analysis of Recursion ... 236
Time Complexity .. 236
Space Complexity .. 237

37. Tower of Hanoi ... 238
Rules .. 238
Algorithm ... 242
Tower of Hanoi in C ... 245

38. Fibonacci Series .. 249
Fibonacci Iterative Algorithm .. 250
Fibonacci Interactive Program in C .. 250
Fibonacci Recursive Algorithm .. 252
Fibonacci Recursive Program in C .. 252

Data Structures & Algorithms

1

Basics

Data Structures & Algorithms

2

Data Structure is a systematic way to organize data in order to use it efficiently. Following
terms are the foundation terms of a data structure.

 Interface − Each data structure has an interface. Interface represents the set of

operations that a data structure supports. An interface only provides the list of

supported operations, type of parameters they can accept and return type of these

operations.

 Implementation − Implementation provides the internal representation of a

data structure. Implementation also provides the definition of the algorithms used

in the operations of the data structure.

Characteristics of a Data Structure

 Correctness − Data structure implementation should implement its interface

correctly.

 Time Complexity − Running time or the execution time of operations of data

structure must be as small as possible.

 Space Complexity − Memory usage of a data structure operation should be as

little as possible.

Need for Data Structure

As applications are getting complex and data rich, there are three common problems that

applications face now-a-days.

 Data Search − Consider an inventory of 1 million(106) items of a store. If the

application is to search an item, it has to search an item in 1 million(106) items

every time slowing down the search. As data grows, search will become slower.

 Processor Speed − Processor speed although being very high, falls limited if the

data grows to billion records.

 Multiple Requests − As thousands of users can search data simultaneously on a

web server, even the fast server fails while searching the data.

To solve the above-mentioned problems, data structures come to rescue. Data can be

organized in a data structure in such a way that all items may not be required to be

searched, and the required data can be searched almost instantly.

1. Overview

Data Structures & Algorithms

3

Execution Time Cases

There are three cases which are usually used to compare various data structure's execution
time in a relative manner.

 Worst Case − This is the scenario where a particular data structure operation

takes maximum time it can take. If an operation's worst case time is ƒ(n) then

this operation will not take more than ƒ(n) time, where ƒ(n) represents function

of n.

 Average Case − This is the scenario depicting the average execution time of an

operation of a data structure. If an operation takes ƒ(n) time in execution, then

m operations will take mƒ(n) time.

 Best Case − This is the scenario depicting the least possible execution time of an

operation of a data structure. If an operation takes ƒ(n) time in execution, then

the actual operation may take time as the random number which would be

maximum as ƒ(n).

Basic Terminology

 Data − Data are values or set of values.

 Data Item − Data item refers to single unit of values.

 Group Items − Data items that are divided into sub items are called as Group

Items.

 Elementary Items − Data items that cannot be divided are called as Elementary

Items.

 Attribute and Entity − An entity is that which contains certain attributes or

properties, which may be assigned values.

 Entity Set − Entities of similar attributes form an entity set.

 Field − Field is a single elementary unit of information representing an attribute

of an entity.

 Record − Record is a collection of field values of a given entity.

 File − File is a collection of records of the entities in a given entity set.

Data Structures & Algorithms

4

Try it Option Online

You really do not need to set up your own environment to start learning C programming

language. Reason is very simple, we already have set up C Programming environment

online, so that you can compile and execute all the available examples online at the same

time when you are doing your theory work. This gives you confidence in what you are

reading and to check the result with different options. Feel free to modify any example

and execute it online.

Try the following example using the Try it option available at the top right corner of the

sample code box −

#include <stdio.h>

int main(){

 /* My first program in C */

 printf("Hello, World! \n");

 return 0;

}

For most of the examples given in this tutorial, you will find Try it option, so just make
use of it and enjoy your learning.

Local Environment Setup

If you are still willing to set up your environment for C programming language, you need

the following two tools available on your computer, (a) Text Editor and (b) The C Compiler.

Text Editor

This will be used to type your program. Examples of few editors include Windows Notepad,

OS Edit command, Brief, Epsilon, EMACS, and vim or vi.

The name and the version of the text editor can vary on different operating systems. For

example, Notepad will be used on Windows, and vim or vi can be used on Windows as well

as Linux or UNIX.

The files you create with your editor are called source files and contain program source

code. The source files for C programs are typically named with the extension ".c".

Before starting your programming, make sure you have one text editor in place and you

have enough experience to write a computer program, save it in a file, compile it, and

finally execute it.

2. Environment Setup

Data Structures & Algorithms

5

The C Compiler

The source code written in the source file is the human readable source for your program.

It needs to be "compiled", to turn into machine language so that your CPU can actually

execute the program as per the given instructions.

This C programming language compiler will be used to compile your source code into a

final executable program. We assume you have the basic knowledge about a programming

language compiler.

Most frequently used and free available compiler is GNU C/C++ compiler. Otherwise, you

can have compilers either from HP or Solaris if you have respective Operating Systems

(OS).

The following section guides you on how to install GNU C/C++ compiler on various OS.

We are mentioning C/C++ together because GNU GCC compiler works for both C and C++

programming languages.

Installation on UNIX/Linux

If you are using Linux or UNIX, then check whether GCC is installed on your system by

entering the following command from the command line −

$ gcc -v

If you have GNU compiler installed on your machine, then it should print a message such

as the following −

Using built-in specs.

Target: i386-redhat-linux

Configured with: ../configure --prefix=/usr

Thread model: posix

gcc version 4.1.2 20080704 (Red Hat 4.1.2-46)

If GCC is not installed, then you will have to install it yourself using the detailed instructions

available at http://gcc.gnu.org/install/

This tutorial has been written based on Linux and all the given examples have been

compiled on Cent OS flavor of Linux system.

Installation on Mac OS

If you use Mac OS X, the easiest way to obtain GCC is to download the Xcode development

environment from Apple's website and follow the simple installation instructions. Once you

have Xcode setup, you will be able to use GNU compiler for C/C++.

Xcode is currently available at developer.apple.com/technologies/tools/

http://gcc.gnu.org/install/
http://developer.apple.com/technologies/tools/

Data Structures & Algorithms

6

Installation on Windows

To install GCC on Windows, you need to install MinGW. To install MinGW, go to the MinGW

homepage, www.mingw.org, and follow the link to the MinGW download page. Download

the latest version of the MinGW installation program, which should be named MinGW-

<version>.exe.

While installing MinWG, at a minimum, you must install gcc-core, gcc-g++, binutils, and

the MinGW runtime, but you may wish to install more.

Add the bin subdirectory of your MinGW installation to your PATH environment variable,

so that you can specify these tools on the command line by their simple names.

When the installation is complete, you will be able to run gcc, g++, ar, ranlib, dlltool, and

several other GNU tools from the Windows command line.

http://www.mingw.org/

Data Structures & Algorithms

7

Algorithm

Data Structures & Algorithms

8

Algorithm is a step-by-step procedure, which defines a set of instructions to be executed

in a certain order to get the desired output. Algorithms are generally created independent

of underlying languages, i.e. an algorithm can be implemented in more than one

programming language.

From the data structure point of view, following are some important categories of

algorithms −

 Search − Algorithm to search an item in a data structure.

 Sort − Algorithm to sort items in a certain order.

 Insert − Algorithm to insert item in a data structure.

 Update − Algorithm to update an existing item in a data structure.

 Delete − Algorithm to delete an existing item from a data structure.

Characteristics of an Algorithm

Not all procedures can be called an algorithm. An algorithm should have the following

characteristics −

 Unambiguous − Algorithm should be clear and unambiguous. Each of its steps

(or phases), and their inputs/outputs should be clear and must lead to only one

meaning.

 Input − An algorithm should have 0 or more well-defined inputs.

 Output − An algorithm should have 1 or more well-defined outputs, and should

match the desired output.

 Finiteness − Algorithms must terminate after a finite number of steps.

 Feasibility − Should be feasible with the available resources.

 Independent − An algorithm should have step-by-step directions, which should

be independent of any programming code.

3. Algorithms ─ Basics

Data Structures & Algorithms

9

How to Write an Algorithm?

There are no well-defined standards for writing algorithms. Rather, it is problem and

resource dependent. Algorithms are never written to support a particular programming

code.

As we know that all programming languages share basic code constructs like loops

(do, for, while), flow-control (if-else), etc. These common constructs can be used to write
an algorithm.

We write algorithms in a step-by-step manner, but it is not always the case. Algorithm

writing is a process and is executed after the problem domain is well-defined. That is, we

should know the problem domain, for which we are designing a solution.

Example

Let's try to learn algorithm-writing by using an example.

Problem − Design an algorithm to add two numbers and display the result.

step 1 − START

step 2 − declare three integers a, b & c

step 3 − define values of a & b

step 4 − add values of a & b

step 5 − store output of step 4 to c

step 6 − print c

step 7 − STOP

Algorithms tell the programmers how to code the program. Alternatively, the algorithm

can be written as −

step 1 − START ADD

step 2 − get values of a & b

step 3 − c ← a + b

step 4 − display c

step 5 − STOP

In design and analysis of algorithms, usually the second method is used to describe an

algorithm. It makes it easy for the analyst to analyze the algorithm ignoring all unwanted
definitions. He can observe what operations are being used and how the process is flowing.

Writing step numbers, is optional.

We design an algorithm to get a solution of a given problem. A problem can be solved in
more than one ways.

Data Structures & Algorithms

10

Hence, many solution algorithms can be derived for a given problem. The next step is to

analyze those proposed solution algorithms and implement the best suitable solution.

Algorithm Analysis

Efficiency of an algorithm can be analyzed at two different stages, before implementation
and after implementation. They are the following −

 A Priori Analysis − This is a theoretical analysis of an algorithm. Efficiency of an

algorithm is measured by assuming that all other factors, for example, processor

speed, are constant and have no effect on the implementation.

 A Posterior Analysis − This is an empirical analysis of an algorithm. The selected

algorithm is implemented using programming language. This is then executed on

target computer machine. In this analysis, actual statistics like running time and

space required, are collected.

We shall learn about a priori algorithm analysis. Algorithm analysis deals with the

execution or running time of various operations involved. The running time of an operation

can be defined as the number of computer instructions executed per operation.

Data Structures & Algorithms

11

Algorithm Complexity

Suppose X is an algorithm and n is the size of input data, the time and space used by the

algorithm X are the two main factors, which decide the efficiency of X.

 Time Factor – Time is measured by counting the number of key operations such

as comparisons in the sorting algorithm.

 Space Factor − Space is measured by counting the maximum memory space

required by the algorithm.

The complexity of an algorithm f(n) gives the running time and/or the storage space

required by the algorithm in terms of n as the size of input data.

Space Complexity

Space complexity of an algorithm represents the amount of memory space required by

the algorithm in its life cycle. The space required by an algorithm is equal to the sum of

the following two components −

 A fixed part that is a space required to store certain data and variables, that are

independent of the size of the problem. For example, simple variables and

constants used, program size, etc.

 A variable part is a space required by variables, whose size depends on the size

of the problem. For example, dynamic memory allocation, recursion stack space,

etc.

Space complexity S(P) of any algorithm P is S(P) = C + SP(I), where C is the fixed part

and S(I) is the variable part of the algorithm, which depends on instance characteristic I.
Following is a simple example that tries to explain the concept −

Algorithm: SUM(A, B)

Step 1 - START

Step 2 - C ← A + B + 10

Step 3 - Stop

Here we have three variables A, B, and C and one constant. Hence S(P) = 1+3. Now,

space depends on data types of given variables and constant types and it will be multiplied
accordingly.

Time Complexity

Time complexity of an algorithm represents the amount of time required by the algorithm

to run to completion. Time requirements can be defined as a numerical function T(n),

where T(n) can be measured as the number of steps, provided each step consumes

constant time.

For example, addition of two n-bit integers takes n steps. Consequently, the total

computational time is T(n) = c*n, where c is the time taken for the addition of two bits.

Here, we observe that T(n) grows linearly as the input size increases.

Data Structures & Algorithms

12

Asymptotic analysis of an algorithm refers to defining the mathematical

boundation/framing of its run-time performance. Using asymptotic analysis, we can very

well conclude the best case, average case, and worst case scenario of an algorithm.

Asymptotic analysis is input bound i.e., if there's no input to the algorithm, it is concluded

to work in a constant time. Other than the "input" all other factors are considered constant.

Asymptotic analysis refers to computing the running time of any operation in mathematical

units of computation. For example, the running time of one operation is computed as f(n)

and may be for another operation it is computed as g(n2). This means the first operation

running time will increase linearly with the increase in n and the running time of the second

operation will increase exponentially when n increases. Similarly, the running time of both

operations will be nearly the same if n is significantly small.

Usually, the time required by an algorithm falls under three types −

 Best Case − Minimum time required for program execution.

 Average Case − Average time required for program execution.

 Worst Case − Maximum time required for program execution.

Asymptotic Notations

Following are the commonly used asymptotic notations to calculate the running time

complexity of an algorithm.

 Ο Notation

 Ω Notation

 θ Notation

Big Oh Notation, Ο

The notation Ο(n) is the formal way to express the upper bound of an algorithm's running

time. It measures the worst case time complexity or the longest amount of time an

algorithm can possibly take to complete.

4. Asymptotic Analysis

Data Structures & Algorithms

13

For example, for a function f(n)

Ο(f(n)) = { g(n) : there exists c > 0 and n0 such that g(n) ≤ c.f(n) for all n
> n0. }

Omega Notation, Ω

The notation Ω(n) is the formal way to express the lower bound of an algorithm's running

time. It measures the best case time complexity or the best amount of time an algorithm

can possibly take to complete.

Data Structures & Algorithms

14

For example, for a function f(n)

Ω(f(n)) ≥ { g(n) : there exists c > 0 and n0 such that g(n) ≤ c.f(n) for all n
> n0. }

Theta Notation, θ

The notation θ(n) is the formal way to express both the lower bound and the upper bound

of an algorithm's running time. It is represented as follows −

θ(f(n)) = { g(n) if and only if g(n) = Ο(f(n)) and g(n) = Ω(f(n)) for all n >
n0. }

Data Structures & Algorithms

15

Common Asymptotic Notations

Following is a list of some common asymptotic notations:

constant − Ο(1)

logarithmic − Ο(log n)

linear − Ο(n)

n log n − Ο(n log n)

quadratic − Ο(n2)

cubic − Ο(n3)

polynomial − nΟ(1)

exponential − 2Ο(n)

Data Structures & Algorithms

16

An algorithm is designed to achieve optimum solution for a given problem. In greedy

algorithm approach, decisions are made from the given solution domain. As being greedy,

the closest solution that seems to provide an optimum solution is chosen.

Greedy algorithms try to find a localized optimum solution, which may eventually lead to

globally optimized solutions. However, generally greedy algorithms do not provide globally

optimized solutions.

Counting Coins

This problem is to count to a desired value by choosing the least possible coins and the

greedy approach forces the algorithm to pick the largest possible coin. If we are provided

coins of € 1, 2, 5 and 10 and we are asked to count € 18 then the greedy procedure will

be −

 1 − Select one € 10 coin, the remaining count is 8

 2 − Then select one € 5 coin, the remaining count is 3

 3 − Then select one € 2 coin, the remaining count is 1

 3 − And finally, the selection of one € 1 coins solves the problem

Though, it seems to be working fine, for this count we need to pick only 4 coins. But if we

slightly change the problem then the same approach may not be able to produce the same
optimum result.

For the currency system, where we have coins of 1, 7, 10 value, counting coins for value

18 will be absolutely optimum but for count like 15, it may use more coins than necessary.

For example, the greedy approach will use 10 + 1 + 1 + 1 + 1 + 1, total 6 coins. Whereas

the same problem could be solved by using only 3 coins (7 + 7 + 1)

Hence, we may conclude that the greedy approach picks an immediate optimized solution
and may fail where global optimization is a major concern.

5. Greedy Algorithms

Data Structures & Algorithms

17

Examples

Most networking algorithms use the greedy approach. Here is a list of few of them −

 Travelling Salesman Problem

 Prim's Minimal Spanning Tree Algorithm

 Kruskal's Minimal Spanning Tree Algorithm

 Dijkstra's Minimal Spanning Tree Algorithm

 Graph - Map Coloring

 Graph - Vertex Cover

 Knapsack Problem

 Job Scheduling Problem

There are lots of similar problems that uses the greedy approach to find an optimum

solution.

Data Structures & Algorithms

18

In divide and conquer approach, the problem in hand, is divided into smaller sub-problems

and then each problem is solved independently. When we keep on dividing the sub-

problems into even smaller sub-problems, we may eventually reach a stage where no

more division is possible. Those "atomic" smallest possible sub-problem (fractions) are

solved. The solution of all sub-problems is finally merged in order to obtain the solution of
an original problem.

Broadly, we can understand divide-and-conquer approach in a three-step process.

Divide/Break

This step involves breaking the problem into smaller sub-problems. Sub-problems should

represent a part of the original problem. This step generally takes a recursive approach to

divide the problem until no sub-problem is further divisible. At this stage, sub-problems

become atomic in nature but still represent some part of the actual problem.

Conquer/Solve

This step receives a lot of smaller sub-problems to be solved. Generally, at this level, the

problems are considered 'solved' on their own.

6. Divide & Conquer

Data Structures & Algorithms

19

Merge/Combine

When the smaller sub-problems are solved, this stage recursively combines them until

they formulate a solution of the original problem. This algorithmic approach works

recursively and conquer & merge steps works so close that they appear as one.

Examples

The following computer algorithms are based on divide-and-conquer programming
approach −

 Merge Sort

 Quick Sort

 Binary Search

 Strassen's Matrix Multiplication

 Closest Pair (points)

There are various ways available to solve any computer problem, but the mentioned are
a good example of divide and conquer approach.

Data Structures & Algorithms

20

Dynamic programming approach is similar to divide and conquer in breaking down the

problem into smaller and yet smaller possible sub-problems. But unlike, divide and

conquer, these sub-problems are not solved independently. Rather, results of these
smaller sub-problems are remembered and used for similar or overlapping sub-problems.

Dynamic programming is used where we have problems, which can be divided into similar

sub-problems, so that their results can be re-used. Mostly, these algorithms are used for

optimization. Before solving the in-hand sub-problem, dynamic algorithm will try to

examine the results of the previously solved sub-problems. The solutions of sub-problems
are combined in order to achieve the best solution.

So we can say −

 The problem should be able to be divided into smaller overlapping sub-problem.

 An optimum solution can be achieved by using an optimum solution of smaller sub-

problems.

 Dynamic algorithms use memorization.

Comparison

In contrast to greedy algorithms, where local optimization is addressed, dynamic

algorithms are motivated for an overall optimization of the problem.

In contrast to divide and conquer algorithms, where solutions are combined to achieve an

overall solution, dynamic algorithms use the output of a smaller sub-problem and then try

to optimize a bigger sub-problem. Dynamic algorithms use memorization to remember the
output of already solved sub-problems.

Example

The following computer problems can be solved using dynamic programming approach −

 Fibonacci number series

 Knapsack problem

 Tower of Hanoi

 All pair shortest path by Floyd-Warshall

 Shortest path by Dijkstra

 Project scheduling

Dynamic programming can be used in both top-down and bottom-up manner. And of

course, most of the times, referring to the previous solution output is cheaper than re-

computing in terms of CPU cycles.

7. Dynamic Programming

Data Structures & Algorithms

21

Data Structures

Data Structures & Algorithms

22

This chapter explains the basic terms related to data structure.

Data Definition

Data Definition defines a particular data with the following characteristics.

 Atomic − Definition should define a single concept.

 Traceable − Definition should be able to be mapped to some data element.

 Accurate − Definition should be unambiguous.

 Clear and Concise − Definition should be understandable.

Data Object

Data Object represents an object having a data.

Data Type

Data type is a way to classify various types of data such as integer, string, etc. which

determines the values that can be used with the corresponding type of data, the type of

operations that can be performed on the corresponding type of data. There are two data

types −

 Built-in Data Type

 Derived Data Type

Built-in Data Type

Those data types for which a language has built-in support are known as Built-in Data
types. For example, most of the languages provide the following built-in data types.

 Integers

 Boolean (true, false)

 Floating (Decimal numbers)

 Character and Strings

8. Basic Concepts

Data Structures & Algorithms

23

Derived Data Type

Those data types which are implementation independent as they can be implemented in

one or the other way are known as derived data types. These data types are normally built

by the combination of primary or built-in data types and associated operations on them.
For example −

 List

 Array

 Stack

 Queue

Basic Operations

The data in the data structures are processed by certain operations. The particular data

structure chosen largely depends on the frequency of the operation that needs to be

performed on the data structure.

 Traversing

 Searching

 Insertion

 Deletion

 Sorting

 Merging

Data Structures & Algorithms

24

Array is a container which can hold a fix number of items and these items should be of the

same type. Most of the data structures make use of arrays to implement their algorithms.

Following are the important terms to understand the concept of Array.

 Element − Each item stored in an array is called an element.

 Index − Each location of an element in an array has a numerical index, which is

used to identify the element.

Array Representation

Arrays can be declared in various ways in different languages. For illustration, let's take C
array declaration.

Arrays can be declared in various ways in different languages. For illustration, let's take C
array declaration.

As per the above illustration, following are the important points to be considered.

 Index starts with 0.

 Array length is 8 which means it can store 8 elements.

 Each element can be accessed via its index. For example, we can fetch an element

at index 6 as 9.

9. Arrays

Data Structures & Algorithms

25

Basic Operations

Following are the basic operations supported by an array.

 Traverse − Prints all the array elements one by one.

 Insertion − Adds an element at the given index.

 Deletion − Deletes an element at the given index.

 Search − Searches an element using the given index or by the value.

 Update − Updates an element at the given index.

In C, when an array is initialized with size, then it assigns defaults values to its elements

in following order.

Data Type Default Value

bool false

char 0

int 0

float 0.0

double 0.0f

void

wchar_t 0

Insertion Operation

Insert operation is to insert one or more data elements into an array. Based on the

requirement, a new element can be added at the beginning, end, or any given index of
array.

Here, we see a practical implementation of insertion operation, where we add data at the
end of the array −

Algorithm

Let Array be a linear unordered array of MAX elements.

Data Structures & Algorithms

26

Example

Result

Let LA be a Linear Array (unordered) with N elements and K is a positive integer such

that K<=N. Following is the algorithm where ITEM is inserted into the Kth position of LA −

1. Start

2. Set J=N

3. Set N = N+1

4. Repeat steps 5 and 6 while J >= K

5. Set LA[J+1] = LA[J]

6. Set J = J-1

7. Set LA[K] = ITEM

8. Stop

Example

Following is the implementation of the above algorithm −

#include <stdio.h>

main() {

 int LA[] = {1,3,5,7,8};

 int item = 10, k = 3, n = 5;

 int i = 0, j = n;

 printf("The original array elements are :\n");

 for(i = 0; i<n; i++) {

 printf("LA[%d] = %d \n", i, LA[i]);

 }

 n = n + 1;

 while(j >= k){

 LA[j+1] = LA[j];

 j = j - 1;

 }

Data Structures & Algorithms

27

 LA[k] = item;

 printf("The array elements after insertion :\n");

 for(i = 0; i<n; i++) {

 printf("LA[%d] = %d \n", i, LA[i]);

 }

}

When we compile and execute the above program, it produces the following result −

The original array elements are :

LA[0]=1

LA[1]=3

LA[2]=5

LA[3]=7

LA[4]=8

The array elements after insertion :

LA[0]=1

LA[1]=3

LA[2]=5

LA[3]=10

LA[4]=7

LA[5]=8

For other variations of array insertion operation click here

Array Insertions

In the previous section, we have learnt how the insertion operation works. It is not always

necessary that an element is inserted at the end of an array. Following can be a situation
with array insertion −

 Insertion at the beginning of an array

 Insertion at the given index of an array

 Insertion after the given index of an array

 Insertion before the given index of an array

http://www.tutorialspoint.com/data_structures_algorithms/array_insertion_algorithm.htm

Data Structures & Algorithms

28

Insertion at the Beginning of an Array

When the insertion happens at the beginning, it causes all the existing data items to shift

one step downward. Here, we design and implement an algorithm to insert an element at

the beginning of an array.

Algorithm

We assume A is an array with N elements. The maximum numbers of elements it can

store is defined by MAX. We shall first check if an array has any empty space to store any
element and then we proceed with the insertion process.

begin

IF N = MAX, return

ELSE

 N = N + 1

 For All Elements in A

 Move to next adjacent location

 A[FIRST] = New_Element

end

Implementation in C

#include <stdio.h>

#define MAX 5

void main() {

 int array[MAX] = {2, 3, 4, 5};

 int N = 4; // number of elements in array

 int i = 0; // loop variable

 int value = 1; // new data element to be stored in array

 // print array before insertion

 printf("Printing array before insertion −\n");

Data Structures & Algorithms

29

 for(i = 0; i < N; i++) {

 printf("array[%d] = %d \n", i, array[i]);

 }

 // now shift rest of the elements downwards

 for(i = N; i >= 0; i--) {

 array[i+1] = array[i];

 }

 // add new element at first position

 array[0] = value;

 // increase N to reflect number of elements

 N++;

 // print to confirm

 printf("Printing array after insertion −\n");

 for(i = 0; i < N; i++) {

 printf("array[%d] = %d\n", i, array[i]);

 }

}

This program should yield the following output −

Printing array before insertion −

array[0] = 2

array[1] = 3

array[2] = 4

array[3] = 5

Printing array after insertion −

array[0] = 1

array[1] = 2

array[2] = 3

array[3] = 4

array[4] = 5

Data Structures & Algorithms

30

Insertion at the Given Index of an Array

In this scenario, we are given the exact location (index) of an array where a new data

element (value) needs to be inserted. First we shall check if the array is full, if it is not,

then we shall move all data elements from that location one step downward. This will make
room for a new data element.

Algorithm

We assume A is an array with N elements. The maximum numbers of elements it can
store is defined by MAX.

begin

IF N = MAX, return

ELSE

 N = N + 1

 SEEK Location index

 For All Elements from A[index] to A[N]

 Move to next adjacent location

 A[index] = New_Element

end

Implementation in C

#include <stdio.h>

#define MAX 5

void main() {

 int array[MAX] = {1, 2, 4, 5};

 int N = 4; // number of elements in array

 int i = 0; // loop variable

 int index = 2; // index location to insert new value

 int value = 3; // new data element to be inserted

Data Structures & Algorithms

31

 // print array before insertion

 printf("Printing array before insertion −\n");

 for(i = 0; i < N; i++) {

 printf("array[%d] = %d \n", i, array[i]);

 }

 // now shift rest of the elements downwards

 for(i = N; i >= index; i--) {

 array[i+1] = array[i];

 }

 // add new element at first position

 array[index] = value;

 // increase N to reflect number of elements

 N++;

 // print to confirm

 printf("Printing array after insertion −\n");

 for(i = 0; i < N; i++) {

 printf("array[%d] = %d\n", i, array[i]);

 }

}

If we compile and run the above program, it will produce the following result −

Printing array before insertion −

array[0] = 1

array[1] = 2

array[2] = 4

array[3] = 5

Printing array after insertion −

array[0] = 1

array[1] = 2

Data Structures & Algorithms

32

array[2] = 3

array[3] = 4

array[4] = 5

Insertion After the Given Index of an Array

In this scenario we are given a location (index) of an array after which a new data element

(value) has to be inserted. Only the seek process varies, the rest of the activities are the

same as in the previous example.

Algorithm

We assume A is an array with N elements. The maximum numbers of elements it can
store is defined by MAX.

begin

IF N = MAX, return

ELSE

 N = N + 1

 SEEK Location index

 For All Elements from A[index + 1] to A[N]

 Move to next adjacent location

 A[index + 1] = New_Element

end

Implementation in C

#include <stdio.h>

#define MAX 5

void main() {

 int array[MAX] = {1, 2, 4, 5};

 int N = 4; // number of elements in array

 int i = 0; // loop variable

 int index = 1; // index location after which value will be inserted

Data Structures & Algorithms

33

 int value = 3; // new data element to be inserted

 // print array before insertion

 printf("Printing array before insertion −\n");

 for(i = 0; i < N; i++) {

 printf("array[%d] = %d \n", i, array[i]);

 }

 // now shift rest of the elements downwards

 for(i = N; i >= index + 1; i--) {

 array[i + 1] = array[i];

 }

 // add new element at first position

 array[index + 1] = value;

 // increase N to reflect number of elements

 N++;

 // print to confirm

 printf("Printing array after insertion −\n");

 for(i = 0; i < N; i++) {

 printf("array[%d] = %d\n", i, array[i]);

 }

}

If we compile and run the above program, it will produce the following result −

Printing array before insertion −

array[0] = 1

array[1] = 2

array[2] = 4

array[3] = 5

Printing array after insertion −

array[0] = 1

Data Structures & Algorithms

34

array[1] = 2

array[2] = 3

array[3] = 4

array[4] = 5

Insertion Before the Given Index of an Array

In this scenario we are given a location (index) of an array before which a new data

element (value) has to be inserted. This time we seek till index-1, i.e., one location
ahead of the given index. Rest of the activities are the same as in the previous example.

Algorithm

We assume A is an array with N elements. The maximum numbers of elements it can

store is defined by MAX.

begin

IF N = MAX, return

ELSE

 N = N + 1

 SEEK Location index

 For All Elements from A[index - 1] to A[N]

 Move to next adjacent location

 A[index - 1] = New_Element

end

Implementation in C

#include <stdio.h>

Data Structures & Algorithms

35

#define MAX 5

void main() {

 int array[MAX] = {1, 2, 4, 5};

 int N = 4; // number of elements in array

 int i = 0; // loop variable

 int index = 3; // index location before which value will be inserted

 int value = 3; // new data element to be inserted

 // print array before insertion

 printf("Printing array before insertion −\n");

 for(i = 0; i < N; i++) {

 printf("array[%d] = %d \n", i, array[i]);

 }

 // now shift rest of the elements downwards

 for(i = N; i >= index + 1; i--) {

 array[i + 1] = array[i];

 }

 // add new element at first position

 array[index + 1] = value;

 // increase N to reflect number of elements

 N++;

 // print to confirm

 printf("Printing array after insertion −\n");

 for(i = 0; i < N; i++) {

 printf("array[%d] = %d\n", i, array[i]);

 }

}

If we compile and run the above program, it will produce the following result −

Printing array before insertion −

Data Structures & Algorithms

36

array[0] = 1

array[1] = 2

array[2] = 4

array[3] = 5

Printing array after insertion −

array[0] = 1

array[1] = 2

array[2] = 3

array[3] = 4

array[4] = 5

Deletion Operation

Deletion refers to removing an existing element from the array and re-organizing all
elements of an array.

Algorithm

Consider LA is a linear array with N elements and K is a positive integer such that K<=N.
Following is the algorithm to delete an element available at the Kth position of LA.

1. Start

2. Set J=K

3. Repeat steps 4 and 5 while J < N

4. Set LA[J-1] = LA[J]

5. Set J = J+1

6. Set N = N-1

7. Stop

Example

Following is the implementation of the above algorithm −

#include <stdio.h>

main() {

 int LA[] = {1,3,5,7,8};

 int k = 3, n = 5;

 int i, j;

 printf("The original array elements are :\n");

Data Structures & Algorithms

37

 for(i = 0; i<n; i++) {

 printf("LA[%d] = %d \n", i, LA[i]);

 }

 j = k;

 while(j < n){

 LA[j-1] = LA[j];

 j = j + 1;

 }

 n = n -1;

 printf("The array elements after deletion :\n");

 for(i = 0; i<n; i++) {

 printf("LA[%d] = %d \n", i, LA[i]);

 }

}

When we compile and execute the above program, it produces the following result −

The original array elements are :

LA[0]=1

LA[1]=3

LA[2]=5

LA[3]=7

LA[4]=8

The array elements after deletion :

LA[0]=1

LA[1]=3

LA[2]=7

LA[3]=8

Search Operation

You can perform a search for an array element based on its value or its index.

Data Structures & Algorithms

38

Algorithm

Consider LA is a linear array with N elements and K is a positive integer such that K<=N.
Following is the algorithm to find an element with a value of ITEM using sequential search.

1. Start

2. Set J=0

3. Repeat steps 4 and 5 while J < N

4. IF LA[J] is equal ITEM THEN GOTO STEP 6

5. Set J = J +1

6. PRINT J, ITEM

7. Stop

Example

Following is the implementation of the above algorithm −

#include <stdio.h>

main() {

 int LA[] = {1,3,5,7,8};

 int item = 5, n = 5;

 int i = 0, j = 0;

 printf("The original array elements are :\n");

 for(i = 0; i<n; i++) {

 printf("LA[%d] = %d \n", i, LA[i]);

 }

 while(j < n){

 if(LA[j] == item){

 break;

 }

 j = j + 1;

 }

 printf("Found element %d at position %d\n", item, j+1);

}

Data Structures & Algorithms

39

When we compile and execute the above program, it produces the following result −

The original array elements are :

LA[0]=1

LA[1]=3

LA[2]=5

LA[3]=7

LA[4]=8

Found element 5 at position 3

Update Operation

Update operation refers to updating an existing element from the array at a given index.

Algorithm

Consider LA is a linear array with N elements and K is a positive integer such that K<=N.
Following is the algorithm to update an element available at the Kth position of LA.

1. Start

2. Set LA[K-1] = ITEM

3. Stop

Example

Following is the implementation of the above algorithm −

#include <stdio.h>

main() {

 int LA[] = {1,3,5,7,8};

 int k = 3, n = 5, item = 10;

 int i, j;

 printf("The original array elements are :\n");

 for(i = 0; i<n; i++) {

 printf("LA[%d] = %d \n", i, LA[i]);

 }

 LA[k-1] = item;

 printf("The array elements after updation :\n");

Data Structures & Algorithms

40

 for(i = 0; i<n; i++) {

 printf("LA[%d] = %d \n", i, LA[i]);

 }

}

When we compile and execute the above program, it produces the following result −

The original array elements are :

LA[0]=1

LA[1]=3

LA[2]=5

LA[3]=7

LA[4]=8

The array elements after updation :

LA[0]=1

LA[1]=3

LA[2]=10

LA[3]=7

LA[4]=8

Data Structures & Algorithms

41

Linked List

Data Structures & Algorithms

42

A linked list is a sequence of data structures, which are connected together via links.

Linked List is a sequence of links which contains items. Each link contains a connection to

another link. Linked list is the second most-used data structure after array. Following are

the important terms to understand the concept of Linked List.

 Link − Each link of a linked list can store a data called an element.

 Next − Each link of a linked list contains a link to the next link called Next.

 Linked List − A Linked List contains the connection link to the first link called

First.

Linked List Representation

Linked list can be visualized as a chain of nodes, where every node points to the next
node.

As per the above illustration, following are the important points to be considered.

 Linked List contains a link element called first.

 Each link carries a data field(s) and a link field called next.

 Each link is linked with its next link using its next link.

 Last link carries a link as null to mark the end of the list.

Types of Linked List

Following are the various types of linked list.

 Simple Linked List − Item navigation is forward only.

 Doubly Linked List − Items can be navigated forward and backward.

 Circular Linked List − Last item contains link of the first element as next and

the first element has a link to the last element as previous.

10. Linked List ─ Basics

Data Structures & Algorithms

43

Basic Operations

Following are the basic operations supported by a list.

 Insertion − Adds an element at the beginning of the list.

 Deletion − Deletes an element at the beginning of the list.

 Display − Displays the complete list.

 Search − Searches an element using the given key.

 Delete − Deletes an element using the given key.

Insertion Operation

Adding a new node in linked list is a more than one step activity. We shall learn this with

diagrams here. First, create a node using the same structure and find the location where
it has to be inserted.

Imagine that we are inserting a node B (NewNode), between A (LeftNode) and C
(RightNode). Then point B.next to C -

NewNode.next −> RightNode;

It should look like this −

Data Structures & Algorithms

44

Now, the next node at the left should point to the new node.

LeftNode.next −> NewNode;

This will put the new node in the middle of the two. The new list should look like this −

Similar steps should be taken if the node is being inserted at the beginning of the list.

While inserting it at the end, the second last node of the list should point to the new node
and the new node will point to NULL.

Deletion Operation

Deletion is also a more than one step process. We shall learn with pictorial representation.

First, locate the target node to be removed, by using searching algorithms.

The left (previous) node of the target node now should point to the next node of the target

node −

LeftNode.next −> TargetNode.next;

Data Structures & Algorithms

45

This will remove the link that was pointing to the target node. Now, using the following
code, we will remove what the target node is pointing at.

TargetNode.next −> NULL;

We need to use the deleted node. We can keep that in memory otherwise we can simply
deallocate memory and wipe off the target node completely.

Reverse Operation

This operation is a thorough one. We need to make the last node to be pointed by the
head node and reverse the whole linked list.

First, we traverse to the end of the list. It should be pointing to NULL. Now, we shall make
it point to its previous node −

Data Structures & Algorithms

46

We have to make sure that the last node is not the lost node. So we'll have some temp

node, which looks like the head node pointing to the last node. Now, we shall make all left

side nodes point to their previous nodes one by one.

Except the node (first node) pointed by the head node, all nodes should point to their
predecessor, making them their new successor. The first node will point to NULL.

We'll make the head node point to the new first node by using the temp node.

The linked list is now reversed. To see linked list implementation in C programming
language, please click here.

Linked List Program in C

A linked list is a sequence of data structures, which are connected together via links.

Linked List is a sequence of links which contains items. Each link contains a connection to

another link. Linked list is the second most-used data structure after array.

http://www.tutorialspoint.com/data_structures_algorithms/linked_list_program_in_c.htm

Data Structures & Algorithms

47

Implementation in C

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <stdbool.h>

struct node

{

 int data;

 int key;

 struct node *next;

};

struct node *head = NULL;

struct node *current = NULL;

//display the list

void printList()

{

 struct node *ptr = head;

 printf("\n[");

 //start from the beginning

 while(ptr != NULL)

 {

 printf("(%d,%d) ",ptr->key,ptr->data);

 ptr = ptr->next;

 }

 printf("]");

}

//insert link at the first location

void insertFirst(int key, int data)

{

 //create a link

 struct node *link = (struct node*) malloc(sizeof(struct node));

Data Structures & Algorithms

48

 link->key = key;

 link->data = data;

 //point it to old first node

 link->next = head;

 //point first to new first node

 head = link;

}

//delete first item

struct node* deleteFirst()

{

 //save reference to first link

 struct node *tempLink = head;

 //mark next to first link as first

 head = head->next;

 //return the deleted link

 return tempLink;

}

//is list empty

bool isEmpty()

{

 return head == NULL;

}

int length()

{

 int length = 0;

 struct node *current;

 for(current = head; current != NULL; current = current->next)

Data Structures & Algorithms

49

 {

 length++;

 }

 return length;

}

//find a link with given key

struct node* find(int key){

 //start from the first link

 struct node* current = head;

 //if list is empty

 if(head == NULL)

 {

 return NULL;

 }

 //navigate through list

 while(current->key != key){

 //if it is last node

 if(current->next == NULL){

 return NULL;

 }else {

 //go to next link

 current = current->next;

 }

 }

 //if data found, return the current Link

 return current;

}

//delete a link with given key

Data Structures & Algorithms

50

struct node* delete(int key){

 //start from the first link

 struct node* current = head;

 struct node* previous = NULL;

 //if list is empty

 if(head == NULL){

 return NULL;

 }

 //navigate through list

 while(current->key != key){

 //if it is last node

 if(current->next == NULL){

 return NULL;

 }else {

 //store reference to current link

 previous = current;

 //move to next link

 current = current->next;

 }

 }

 //found a match, update the link

 if(current == head) {

 //change first to point to next link

 head = head->next;

 }else {

 //bypass the current link

 previous->next = current->next;

 }

 return current;

}

void sort(){

Data Structures & Algorithms

51

 int i, j, k, tempKey, tempData ;

 struct node *current;

 struct node *next;

 int size = length();

 k = size ;

 for (i = 0 ; i < size - 1 ; i++, k--) {

 current = head ;

 next = head->next ;

 for (j = 1 ; j < k ; j++) {

 if (current->data > next->data) {

 tempData = current->data ;

 current->data = next->data;

 next->data = tempData ;

 tempKey = current->key;

 current->key = next->key;

 next->key = tempKey;

 }

 current = current->next;

 next = next->next;

 }

 }

}

void reverse(struct node** head_ref) {

 struct node* prev = NULL;

 struct node* current = *head_ref;

 struct node* next;

Data Structures & Algorithms

52

 while (current != NULL) {

 next = current->next;

 current->next = prev;

 prev = current;

 current = next;

 }

 *head_ref = prev;

}

main() {

 insertFirst(1,10);

 insertFirst(2,20);

 insertFirst(3,30);

 insertFirst(4,1);

 insertFirst(5,40);

 insertFirst(6,56);

 printf("Original List: ");

 //print list

 printList();

 while(!isEmpty()){

 struct node *temp = deleteFirst();

 printf("\nDeleted value:");

 printf("(%d,%d) ",temp->key,temp->data);

 }

 printf("\nList after deleting all items: ");

 printList();

 insertFirst(1,10);

 insertFirst(2,20);

 insertFirst(3,30);

 insertFirst(4,1);

 insertFirst(5,40);

Data Structures & Algorithms

53

 insertFirst(6,56);

 printf("\nRestored List: ");

 printList();

 printf("\n");

 struct node *foundLink = find(4);

 if(foundLink != NULL){

 printf("Element found: ");

 printf("(%d,%d) ",foundLink->key,foundLink->data);

 printf("\n");

 }else {

 printf("Element not found.");

 }

 delete(4);

 printf("List after deleting an item: ");

 printList();

 printf("\n");

 foundLink = find(4);

 if(foundLink != NULL){

 printf("Element found: ");

 printf("(%d,%d) ",foundLink->key,foundLink->data);

 printf("\n");

 }else {

 printf("Element not found.");

 }

 printf("\n");

 sort();

 printf("List after sorting the data: ");

 printList();

 reverse(&head);

 printf("\nList after reversing the data: ");

 printList();

Data Structures & Algorithms

54

}

If we compile and run the above program, it will produce the following result −

Original List:

[(6,56) (5,40) (4,1) (3,30) (2,20) (1,10)]

Deleted value:(6,56)

Deleted value:(5,40)

Deleted value:(4,1)

Deleted value:(3,30)

Deleted value:(2,20)

Deleted value:(1,10)

List after deleting all items:

[]

Restored List:

[(6,56) (5,40) (4,1) (3,30) (2,20) (1,10)]

Element found: (4,1)

List after deleting an item:

[(6,56) (5,40) (3,30) (2,20) (1,10)]

Element not found.

List after sorting the data:

[(1,10) (2,20) (3,30) (5,40) (6,56)]

List after reversing the data:

[(6,56) (5,40) (3,30) (2,20) (1,10)]

Data Structures & Algorithms

55

Doubly Linked List is a variation of Linked list in which navigation is possible in both ways,

either forward and backward easily as compared to Single Linked List. Following are the

important terms to understand the concept of doubly linked list.

 Link − Each link of a linked list can store a data called an element.

 Next − Each link of a linked list contains a link to the next link called Next.

 Prev − Each link of a linked list contains a link to the previous link called Prev.

 Linked List − A Linked List contains the connection link to the first link called

First and to the last link called Last.

Doubly Linked List Representation

As per the above illustration, following are the important points to be considered.

 Doubly Linked List contains a link element called first and last.

 Each link carries a data field(s) and a link field called next.

 Each link is linked with its next link using its next link.

 Each link is linked with its previous link using its previous link.

 The last link carries a link as null to mark the end of the list.

Basic Operations

Following are the basic operations supported by a list.

 Insertion − Adds an element at the beginning of the list.

 Deletion − Deletes an element at the beginning of the list.

 Insert Last − Adds an element at the end of the list.

 Delete Last − Deletes an element from the end of the list.

11. Doubly Linked List

Data Structures & Algorithms

56

 Insert After − Adds an element after an item of the list.

 Delete − Deletes an element from the list using the key.

 Display forward − Displays the complete list in a forward manner.

 Display backward − Displays the complete list in a backward manner.

Insertion Operation

Following code demonstrates the insertion operation at the beginning of a doubly linked
list.

//insert link at the first location

void insertFirst(int key, int data) {

 //create a link

 struct node *link = (struct node*) malloc(sizeof(struct node));

 link->key = key;

 link->data = data;

 if(isEmpty()) {

 //make it the last link

 last = link;

 }else {

 //update first prev link

 head->prev = link;

 }

 //point it to old first link

 link->next = head;

 //point first to new first link

 head = link;

}

Data Structures & Algorithms

57

Deletion Operation

Following code demonstrates the deletion operation at the beginning of a doubly linked

list.

//delete first item

struct node* deleteFirst() {

 //save reference to first link

 struct node *tempLink = head;

 //if only one link

 if(head->next == NULL) {

 last = NULL;

 }else {

 head->next->prev = NULL;

 }

 head = head->next;

 //return the deleted link

 return tempLink;

}

Insertion at the End of an Operation

Following code demonstrates the insertion operation at the last position of a doubly linked

list.

//insert link at the last location

void insertLast(int key, int data) {

 //create a link

 struct node *link = (struct node*) malloc(sizeof(struct node));

 link->key = key;

 link->data = data;

Data Structures & Algorithms

58

 if(isEmpty()) {

 //make it the last link

 last = link;

 }else {

 //make link a new last link

 last->next = link;

 //mark old last node as prev of new link

 link->prev = last;

 }

 //point last to new last node

 last = link;

}

To see the implementation in C programming language, please click here.

Doubly Linked List Program in C

Doubly Linked List is a variation of Linked list in which navigation is possible in both ways,

either forward and backward easily as compared to Single Linked List.

Implementation in C

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <stdbool.h>

struct node {

 int data;

 int key;

 struct node *next;

 struct node *prev;

};

//this link always point to first Link

http://www.tutorialspoint.com/data_structures_algorithms/doubly_linked_list_program_in_c.htm

Data Structures & Algorithms

59

struct node *head = NULL;

//this link always point to last Link

struct node *last = NULL;

struct node *current = NULL;

//is list empty

bool isEmpty(){

 return head == NULL;

}

int length(){

 int length = 0;

 struct node *current;

 for(current = head; current != NULL; current = current->next){

 length++;

 }

 return length;

}

//display the list in from first to last

void displayForward(){

 //start from the beginning

 struct node *ptr = head;

 //navigate till the end of the list

 printf("\n[");

 while(ptr != NULL){

 printf("(%d,%d) ",ptr->key,ptr->data);

 ptr = ptr->next;

 }

 printf("]");

Data Structures & Algorithms

60

}

//display the list from last to first

void displayBackward(){

 //start from the last

 struct node *ptr = last;

 //navigate till the start of the list

 printf("\n[");

 while(ptr != NULL){

 //print data

 printf("(%d,%d) ",ptr->key,ptr->data);

 //move to next item

 ptr = ptr ->prev;

 printf(" ");

 }

 printf("]");

}

//insert link at the first location

void insertFirst(int key, int data){

 //create a link

 struct node *link = (struct node*) malloc(sizeof(struct node));

 link->key = key;

 link->data = data;

 if(isEmpty()){

 //make it the last link

 last = link;

 }else {

 //update first prev link

Data Structures & Algorithms

61

 head->prev = link;

 }

 //point it to old first link

 link->next = head;

 //point first to new first link

 head = link;

}

//insert link at the last location

void insertLast(int key, int data){

 //create a link

 struct node *link = (struct node*) malloc(sizeof(struct node));

 link->key = key;

 link->data = data;

 if(isEmpty()){

 //make it the last link

 last = link;

 }else {

 //make link a new last link

 last->next = link;

 //mark old last node as prev of new link

 link->prev = last;

 }

 //point last to new last node

 last = link;

}

//delete first item

Data Structures & Algorithms

62

struct node* deleteFirst(){

 //save reference to first link

 struct node *tempLink = head;

 //if only one link

 if(head->next == NULL){

 last = NULL;

 }else {

 head->next->prev = NULL;

 }

 head = head->next;

 //return the deleted link

 return tempLink;

}

//delete link at the last location

struct node* deleteLast(){

 //save reference to last link

 struct node *tempLink = last;

 //if only one link

 if(head->next == NULL){

 head = NULL;

 }else {

 last->prev->next = NULL;

 }

 last = last->prev;

 //return the deleted link

 return tempLink;

}

Data Structures & Algorithms

63

//delete a link with given key

struct node* delete(int key){

 //start from the first link

 struct node* current = head;

 struct node* previous = NULL;

 //if list is empty

 if(head == NULL){

 return NULL;

 }

 //navigate through list

 while(current->key != key){

 //if it is last node

 if(current->next == NULL){

 return NULL;

 }else {

 //store reference to current link

 previous = current;

 //move to next link

 current = current->next;

 }

 }

 //found a match, update the link

 if(current == head) {

 //change first to point to next link

 head = head->next;

 }else {

 //bypass the current link

 current->prev->next = current->next;

 }

 if(current == last){

Data Structures & Algorithms

64

 //change last to point to prev link

 last = current->prev;

 }else {

 current->next->prev = current->prev;

 }

 return current;

}

bool insertAfter(int key, int newKey, int data){

 //start from the first link

 struct node *current = head;

 //if list is empty

 if(head == NULL){

 return false;

 }

 //navigate through list

 while(current->key != key){

 //if it is last node

 if(current->next == NULL){

 return false;

 }else {

 //move to next link

 current = current->next;

 }

 }

 //create a link

 struct node *newLink = (struct node*) malloc(sizeof(struct node));

 newLink->key = key;

 newLink->data = data;

Data Structures & Algorithms

65

 if(current == last) {

 newLink->next = NULL;

 last = newLink;

 }else {

 newLink->next = current->next;

 current->next->prev = newLink;

 }

 newLink->prev = current;

 current->next = newLink;

 return true;

}

main() {

 insertFirst(1,10);

 insertFirst(2,20);

 insertFirst(3,30);

 insertFirst(4,1);

 insertFirst(5,40);

 insertFirst(6,56);

 printf("\nList (First to Last): ");

 displayForward();

 printf("\n");

 printf("\nList (Last to first): ");

 displayBackward();

 printf("\nList , after deleting first record: ");

 deleteFirst();

 displayForward();

 printf("\nList , after deleting last record: ");

 deleteLast();

 displayForward();

 printf("\nList , insert after key(4) : ");

Data Structures & Algorithms

66

 insertAfter(4,7, 13);

 displayForward();

 printf("\nList , after delete key(4) : ");

 delete(4);

 displayForward();

}

If we compile and run the above program, it will produce the following result −

List (First to Last):

[(6,56) (5,40) (4,1) (3,30) (2,20) (1,10)]

List (Last to first):

[(1,10) (2,20) (3,30) (4,1) (5,40) (6,56)]

List , after deleting first record:

[(5,40) (4,1) (3,30) (2,20) (1,10)]

List , after deleting last record:

[(5,40) (4,1) (3,30) (2,20)]

List , insert after key(4) :

[(5,40) (4,1) (4,13) (3,30) (2,20)]

List , after delete key(4) :

[(5,40) (4,13) (3,30) (2,20)]

Data Structures & Algorithms

67

Circular Linked List is a variation of Linked list in which the first element points to the last

element and the last element points to the first element. Both Singly Linked List and

Doubly Linked List can be made into a circular linked list.

Singly Linked List as Circular

In singly linked list, the next pointer of the last node points to the first node.

Doubly Linked List as Circular

In doubly linked list, the next pointer of the last node points to the first node and the

previous pointer of the first node points to the last node making the circular in both
directions.

As per the above illustration, following are the important points to be considered.

 The last link's next points to the first link of the list in both cases of singly as well

as doubly linked list.

 The first link's previous points to the last of the list in case of doubly linked list.

Basic Operations

Following are the important operations supported by a circular list.

 insert − Inserts an element at the start of the list.

 delete – Deletes an element from the start of the list.

 display − Displays the list.

12. Circular Linked List

Data Structures & Algorithms

68

Insertion Operation

Following code demonstrates the insertion operation in a circular linked list based on single
linked list.

//insert link at the first location

void insertFirst(int key, int data) {

 //create a link

 struct node *link = (struct node*) malloc(sizeof(struct node));

 link->key = key;

 link->data= data;

 if (isEmpty()) {

 head = link;

 head->next = head;

 }else {

 //point it to old first node

 link->next = head;

 //point first to new first node

 head = link;

 }

}

Deletion Operation

Following code demonstrates the deletion operation in a circular linked list based on single

linked list.

//delete first item

struct node * deleteFirst() {

 //save reference to first link

 struct node *tempLink = head;

 if(head->next == head){

 head = NULL;

 return tempLink;

 }

Data Structures & Algorithms

69

 //mark next to first link as first

 head = head->next;

 //return the deleted link

 return tempLink;

}

Display List Operation

Following code demonstrates the display list operation in a circular linked list.

//display the list

void printList() {

 struct node *ptr = head;

 printf("\n[");

 //start from the beginning

 if(head != NULL) {

 while(ptr->next != ptr) {

 printf("(%d,%d) ",ptr->key,ptr->data);

 ptr = ptr->next;

 }

 }

 printf("]");

}

To know about its implementation in C programming language, please click here.

Circular Linked List Program in C

Circular Linked List is a variation of Linked list in which the first element points to the last

element and the last element points to the first element. Both Singly Linked List and
Doubly Linked List can be made into a circular linked list.

http://www.tutorialspoint.com/data_structures_algorithms/circular_linked_list_program_in_c.htm

Data Structures & Algorithms

70

Implementation in C

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <stdbool.h>

struct node {

 int data;

 int key;

 struct node *next;

};

struct node *head = NULL;

struct node *current = NULL;

bool isEmpty(){

 return head == NULL;

}

int length(){

 int length = 0;

 //if list is empty

 if(head == NULL){

 return 0;

 }

 current = head->next;

 while(current != head){

 length++;

 current = current->next;

 }

Data Structures & Algorithms

71

 return length;

}

//insert link at the first location

void insertFirst(int key, int data){

 //create a link

 struct node *link = (struct node*) malloc(sizeof(struct node));

 link->key = key;

 link->data = data;

 if (isEmpty()) {

 head = link;

 head->next = head;

 }else {

 //point it to old first node

 link->next = head;

 //point first to new first node

 head = link;

 }

}

//delete first item

struct node * deleteFirst(){

 //save reference to first link

 struct node *tempLink = head;

 if(head->next == head){

 head = NULL;

 return tempLink;

 }

Data Structures & Algorithms

72

 //mark next to first link as first

 head = head->next;

 //return the deleted link

 return tempLink;

}

//display the list

void printList(){

 struct node *ptr = head;

 printf("\n[");

 //start from the beginning

 if(head != NULL){

 while(ptr->next != ptr){

 printf("(%d,%d) ",ptr->key,ptr->data);

 ptr = ptr->next;

 }

 }

 printf("]");

}

main() {

 insertFirst(1,10);

 insertFirst(2,20);

 insertFirst(3,30);

 insertFirst(4,1);

 insertFirst(5,40);

 insertFirst(6,56);

Data Structures & Algorithms

73

 printf("Original List: ");

 //print list

 printList();

 while(!isEmpty()){

 struct node *temp = deleteFirst();

 printf("\nDeleted value:");

 printf("(%d,%d) ",temp->key,temp->data);

 }

 printf("\nList after deleting all items: ");

 printList();

}

If we compile and run the above program, it will produce the following result −

Original List:

[(6,56) (5,40) (4,1) (3,30) (2,20)]

Deleted value:(6,56)

Deleted value:(5,40)

Deleted value:(4,1)

Deleted value:(3,30)

Deleted value:(2,20)

Deleted value:(1,10)

List after deleting all items:

[]

Data Structures & Algorithms

74

Stack & Queue

Data Structures & Algorithms

75

A stack is an Abstract Data Type (ADT), commonly used in most programming languages.

It is named stack as it behaves like a real-world stack, for example – a deck of cards or a

pile of plates, etc.

A real-world stack allows operations at one end only. For example, we can place or remove

a card or plate from the top of the stack only. Likewise, Stack ADT allows all data

operations at one end only. At any given time, we can only access the top element of a
stack.

This feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, the

element which is placed (inserted or added) last, is accessed first. In stack terminology,

insertion operation is called PUSH operation and removal operation is
called POP operation.

Stack Representation

The following diagram depicts a stack and its operations −

A stack can be implemented by means of Array, Structure, Pointer, and Linked List. Stack

can either be a fixed size one or it may have a sense of dynamic resizing. Here, we are

going to implement stack using arrays, which makes it a fixed size stack implementation.

13. Stack

Data Structures & Algorithms

76

Basic Operations

Stack operations may involve initializing the stack, using it and then de-initializing it. Apart
from these basic stuffs, a stack is used for the following two primary operations −

 push() − Pushing (storing) an element on the stack.

 pop() − Removing (accessing) an element from the stack.

When data is PUSHed onto stack.

To use a stack efficiently, we need to check the status of stack as well. For the same
purpose, the following functionality is added to stacks −

 peek() − get the top data element of the stack, without removing it.

 isFull() − check if stack is full.

 isEmpty() − check if stack is empty.

At all times, we maintain a pointer to the last PUSHed data on the stack. As this pointer

always represents the top of the stack, hence named top. The top pointer provides top

value of the stack without actually removing it.

First we should learn about procedures to support stack functions −

peek()

Algorithm of peek() function −

begin procedure peek

 return stack[top]

end procedure

Implementation of peek() function in C programming language −

int peek() {

 return stack[top];

}

Data Structures & Algorithms

77

isfull()

Algorithm of isfull() function −

begin procedure isfull

 if top equals to MAXSIZE

 return true

 else

 return false

 endif

end procedure

Implementation of isfull() function in C programming language −

bool isfull() {

 if(top == MAXSIZE)

 return true;

 else

 return false;

}

isempty()

Algorithm of isempty() function −

begin procedure isempty

 if top less than 1

 return true

 else

 return false

 endif

end procedure

Data Structures & Algorithms

78

Implementation of isempty() function in C programming language is slightly different. We

initialize top at -1, as the index in array starts from 0. So we check if the top is below zero
or -1 to determine if the stack is empty. Here's the code −

bool isempty() {

 if(top == -1)

 return true;

 else

 return false;

}

Push Operation

The process of putting a new data element onto stack is known as a Push Operation. Push
operation involves a series of steps −

 Step 1 − Checks if the stack is full.

 Step 2 − If the stack is full, produces an error and exit.

 Step 3 − If the stack is not full, increments top to point next empty space.

 Step 4 − Adds data element to the stack location, where top is pointing.

 Step 5 − Returns success.

Data Structures & Algorithms

79

If the linked list is used to implement the stack, then in step 3, we need to allocate space
dynamically.

Algorithm for PUSH Operation

A simple algorithm for Push operation can be derived as follows −

begin procedure push: stack, data

 if stack is full

 return null

 endif

 top ← top + 1

 stack[top] ← data

end procedure

Implementation of this algorithm in C, is very easy. See the following code −

void push(int data) {

 if(!isFull()) {

 top = top + 1;

 stack[top] = data;

 }else {

 printf("Could not insert data, Stack is full.\n");

 }

}

Pop Operation

Accessing the content while removing it from the stack, is known as a Pop Operation. In

an array implementation of pop() operation, the data element is not actually removed,

instead top is decremented to a lower position in the stack to point to the next value. But

in linked-list implementation, pop() actually removes data element and deallocates
memory space.

A Pop operation may involve the following steps −

 Step 1 − Checks if the stack is empty.

 Step 2 − If the stack is empty, produces an error and exit.

Data Structures & Algorithms

80

 Step 3 − If the stack is not empty, accesses the data element at which top is

pointing.

 Step 4 − Decreases the value of top by 1.

 Step 5 − Returns success.

Algorithm for Pop Operation

A simple algorithm for Pop operation can be derived as follows −

begin procedure pop: stack

 if stack is empty

 return null

 endif

 data ← stack[top]

 top ← top - 1

 return data

end procedure

Data Structures & Algorithms

81

Implementation of this algorithm in C, is as follows −

int pop(int data) {

 if(!isempty()) {

 data = stack[top];

 top = top - 1;

 return data;

 }else {

 printf("Could not retrieve data, Stack is empty.\n");

 }

}

For a complete stack program in C programming language, please click here.

Stack Program in C

We shall see the stack implementation in C programming language here. You can try the

program by clicking on the Try-it button. To learn the theory aspect of stacks, click on visit
previous page.

Implementation in C

#include <stdio.h>

int MAXSIZE = 8;

int stack[8];

int top = -1;

int isempty() {

 if(top == -1)

 return 1;

 else

 return 0;

}

http://www.tutorialspoint.com/data_structures_algorithms/stack_program_in_c.htm

Data Structures & Algorithms

82

int isfull() {

 if(top == MAXSIZE)

 return 1;

 else

 return 0;

}

int peek() {

 return stack[top];

}

int pop() {

 int data;

 if(!isempty()) {

 data = stack[top];

 top = top - 1;

 return data;

 }else {

 printf("Could not retrieve data, Stack is empty.\n");

 }

}

int push(int data) {

 if(!isfull()) {

 top = top + 1;

 stack[top] = data;

 }else {

 printf("Could not insert data, Stack is full.\n");

 }

}

Data Structures & Algorithms

83

int main() {

 // push items on to the stack

 push(3);

 push(5);

 push(9);

 push(1);

 push(12);

 push(15);

 printf("Element at top of the stack: %d\n" ,peek());

 printf("Elements: \n");

 // print stack data

 while(!isempty()) {

 int data = pop();

 printf("%d\n",data);

 }

 printf("Stack full: %s\n" , isfull()?"true":"false");

 printf("Stack empty: %s\n" , isempty()?"true":"false");

 return 0;

}

If we compile and run the above program, it will produce the following result −

Element at top of the stack: 15

Elements:

15

12

1

9

5

3

Stack full: false

Stack empty: true

Data Structures & Algorithms

84

The way to write arithmetic expression is known as a notation. An arithmetic expression

can be written in three different but equivalent notations, i.e., without changing the

essence or output of an expression. These notations are −

 Infix Notation

 Prefix (Polish) Notation

 Postfix (Reverse-Polish) Notation

These notations are named as how they use operator in expression. We shall learn the
same here in this chapter.

Infix Notation

We write expression in infix notation, e.g. a-b+c, where operators are used in-between

operands. It is easy for us humans to read, write, and speak in infix notation but the same

does not go well with computing devices. An algorithm to process infix notation could be

difficult and costly in terms of time and space consumption.

Prefix Notation

In this notation, operator is prefixed to operands, i.e. operator is written ahead of

operands. For example, +ab. This is equivalent to its infix notation a+b. Prefix notation

is also known as Polish Notation.

Postfix Notation

This notation style is known as Reversed Polish Notation. In this notation style, the

operator is postfixed to the operands i.e., the operator is written after the operands. For
example, ab+. This is equivalent to its infix notation a+b.

The following table briefly tries to show the difference in all three notations −

Sr.

No.
Infix Notation Prefix Notation Postfix Notation

1 a + b + a b a b +

2 (a + b) * c * + a b c a b + c *

3 a * (b + c) * a + b c a b c + *

4 a / b + c / d + / a b / c d a b / c d / +

14. Expression Parsing

Data Structures & Algorithms

85

5 (a + b) * (c + d) * + a b + c d a b + c d + *

6 ((a + b) * c) - d - * + a b c d a b + c * d -

Parsing Expressions

As we have discussed, it is not a very efficient way to design an algorithm or program to

parse infix notations. Instead, these infix notations are first converted into either postfix
or prefix notations and then computed.

To parse any arithmetic expression, we need to take care of operator precedence and
associativity also.

Precedence

When an operand is in between two different operators, which operator will take the

operand first, is decided by the precedence of an operator over others. For example −

As multiplication operation has precedence over addition, b * c will be evaluated first. A

table of operator precedence is provided later.

Associativity

Associativity describes the rule where operators with the same precedence appear in an

expression. For example, in expression a+b−c, both + and – have the same precedence,

then which part of the expression will be evaluated first, is determined by associativity of

those operators. Here, both + and − are left associative, so the expression will be
evaluated as (a+b)−c.

Precedence and associativity determines the order of evaluation of an expression.
Following is an operator precedence and associativity table (highest to lowest) −

Sr.

No.
Operator Precedence Associativity

1 Exponentiation ^ Highest Right Associative

2 Multiplication (*) & Division (/) Second Highest Left Associative

3 Addition (+) & Subtraction (−) Lowest Left Associative

The above table shows the default behavior of operators. At any point of time in expression

evaluation, the order can be altered by using parenthesis. For example −

Data Structures & Algorithms

86

In a+b*c, the expression part b*c will be evaluated first, with multiplication as

precedence over addition. We here use parenthesis for a+b to be evaluated first,

like (a+b)*c.

Postfix Evaluation Algorithm

We shall now look at the algorithm on how to evaluate postfix notation −

Step 1 − scan the expression from left to right

Step 2 − if it is an operand push it to stack

Step 3 − if it is an operator pull operand from stack and perform operation

Step 4 − store the output of step 3, back to stack

Step 5 − scan the expression until all operands are consumed

Step 6 − pop the stack and perform operation

To see the implementation in C programming language, please click here

Expression Parsing Using Stack

Infix notation is easier for humans to read and understand whereas for electronic machines

like computers, postfix is the best form of expression to parse. We shall see here a program
to convert and evaluate infix notation to postfix notation −

#include<stdio.h>

#include<string.h>

//char stack

char stack[25];

int top = -1;

void push(char item) {

 stack[++top] = item;

}

char pop() {

 return stack[top--];

}

http://www.tutorialspoint.com/data_structures_algorithms/expression_parsing_using_statck.htm

Data Structures & Algorithms

87

//returns precedence of operators

int precedence(char symbol) {

 switch(symbol) {

 case '+':

 case '-':

 return 2;

 break;

 case '*':

 case '/':

 return 3;

 break;

 case '^':

 return 4;

 break;

 case '(':

 case ')':

 case '#':

 return 1;

 break;

 }

}

//check whether the symbol is operator?

int isOperator(char symbol) {

 switch(symbol) {

 case '+':

 case '-':

 case '*':

 case '/':

 case '^':

 case '(':

 case ')':

 return 1;

 break;

Data Structures & Algorithms

88

 default:

 return 0;

 }

}

//converts infix expression to postfix

void convert(char infix[],char postfix[]) {

 int i,symbol,j = 0;

 stack[++top] = '#';

 for(i = 0;i<strlen(infix);i++) {

 symbol = infix[i];

 if(isOperator(symbol) == 0) {

 postfix[j] = symbol;

 j++;

 } else {

 if(symbol == '(') {

 push(symbol);

 }else {

 if(symbol == ')') {

 while(stack[top] != '(') {

 postfix[j] = pop();

 j++;

 }

 pop();//pop out (.

 } else {

 if(precedence(symbol)>precedence(stack[top])) {

 push(symbol);

 }else {

 while(precedence(symbol)<=precedence(stack[top])) {

 postfix[j] = pop();

 j++;

 }

Data Structures & Algorithms

89

 push(symbol);

 }

 }

 }

 }

 }

 while(stack[top] != '#') {

 postfix[j] = pop();

 j++;

 }

 postfix[j]='\0';//null terminate string.

}

//int stack

int stack_int[25];

int top_int = -1;

void push_int(int item) {

 stack_int[++top_int] = item;

}

char pop_int() {

 return stack_int[top_int--];

}

//evaluates postfix expression

int evaluate(char *postfix){

 char ch;

 int i = 0,operand1,operand2;

 while((ch = postfix[i++]) != '\0') {

 if(isdigit(ch)) {

Data Structures & Algorithms

90

 push_int(ch-'0'); // Push the operand

 }else {

 //Operator,pop two operands

 operand2 = pop_int();

 operand1 = pop_int();

 switch(ch) {

 case '+':

 push_int(operand1+operand2);

 break;

 case '-':

 push_int(operand1-operand2);

 break;

 case '*':

 push_int(operand1*operand2);

 break;

 case '/':

 push_int(operand1/operand2);

 break;

 }

 }

 }

 return stack_int[top_int];

}

void main() {

 char infix[25] = "1*(2+3)",postfix[25];

 convert(infix,postfix);

 printf("Infix expression is: %s\n" , infix);

 printf("Postfix expression is: %s\n" , postfix);

 printf("Evaluated expression is: %d\n" , evaluate(postfix));

}

Data Structures & Algorithms

91

If we compile and run the above program, it will produce the following result −

Infix expression is: 1*(2+3)

Postfix expression is: 123+*

Result is: 5

Data Structures & Algorithms

92

Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a queue

is open at both its ends. One end is always used to insert data (enqueue) and the other is

used to remove data (dequeue). Queue follows First-In-First-Out methodology, i.e., the
data item stored first will be accessed first.

A real-world example of queue can be a single-lane one-way road, where the vehicle enters

first, exits first. More real-world examples can be seen as queues at the ticket windows

and bus-stops.

Queue Representation

As we now understand that in queue, we access both ends for different reasons. The
following diagram given below tries to explain queue representation as data structure −

As in stacks, a queue can also be implemented using Arrays, Linked-lists, Pointers and

Structures. For the sake of simplicity, we shall implement queues using one-dimensional
array.

Basic Operations

Queue operations may involve initializing or defining the queue, utilizing it, and then

completely erasing it from the memory. Here we shall try to understand the basic

operations associated with queues −

 enqueue() − add (store) an item to the queue.

 dequeue() − remove (access) an item from the queue.

15. Queue

Data Structures & Algorithms

93

Few more functions are required to make the above-mentioned queue operation efficient.
These are −

 peek() − Gets the element at the front of the queue without removing it.

 isfull() − Checks if the queue is full.

 isempty() − Checks if the queue is empty.

In queue, we always dequeue (or access) data, pointed by front pointer and while
enqueing (or storing) data in the queue we take help of rear pointer.

Let's first learn about supportive functions of a queue −

peek()

This function helps to see the data at the front of the queue. The algorithm of peek()

function is as follows −

begin procedure peek

 return queue[front]

end procedure

Implementation of peek() function in C programming language −

int peek() {

 return queue[front];

}

isfull()

As we are using single dimension array to implement queue, we just check for the rear

pointer to reach at MAXSIZE to determine that the queue is full. In case we maintain the
queue in a circular linked-list, the algorithm will differ. Algorithm of isfull() function −

begin procedure isfull

 if rear equals to MAXSIZE

 return true

 else

Data Structures & Algorithms

94

 return false

 endif

end procedure

Implementation of isfull() function in C programming language −

bool isfull() {

 if(rear == MAXSIZE - 1)

 return true;

 else

 return false;

}

isempty()

Algorithm of isempty() function −

begin procedure isempty

 if front is less than MIN OR front is greater than rear

 return true

 else

 return false

 endif

end procedure

If the value of front is less than MIN or 0, it tells that the queue is not yet initialized,

hence empty.

Here's the C programming code −

bool isempty() {

 if(front < 0 || front > rear)

 return true;

 else

 return false;

}

Data Structures & Algorithms

95

Enqueue Operation

Queues maintain two data pointers, front and rear. Therefore, its operations are
comparatively difficult to implement than that of stacks.

The following steps should be taken to enqueue (insert) data into a queue −

 Step 1 − Check if the queue is full.

 Step 2 − If the queue is full, produce overflow error and exit.

 Step 3 − If the queue is not full, increment rear pointer to point the next empty

space.

 Step 4 − Add data element to the queue location, where the rear is pointing.

 Step 5 − Return success.

Sometimes, we also check to see if a queue is initialized or not, to handle any unforeseen
situations.

Data Structures & Algorithms

96

Algorithm for enqueue Operation

procedure enqueue(data)

 if queue is full

 return overflow

 endif

 rear ← rear + 1

 queue[rear] ← data

 return true

end procedure

Implementation of enqueue() in C programming language −

int enqueue(int data)

 if(isfull())

 return 0;

 rear = rear + 1;

 queue[rear] = data;

 return 1;

end procedure

Dequeue Operation

Accessing data from the queue is a process of two tasks − access the data where front is

pointing and remove the data after access. The following steps are taken to
perform dequeue operation −

 Step 1 − Check if the queue is empty.

 Step 2 − If the queue is empty, produce underflow error and exit.

 Step 3 − If the queue is not empty, access the data where front is pointing.

 Step 4 − Increment front pointer to point to the next available data element.

 Step 5 − Return success.

Data Structures & Algorithms

97

Algorithm for dequeue Operation

procedure dequeue

 if queue is empty

 return underflow

 end if

 data = queue[front]

 front ← front + 1

 return true

end procedure

Implementation of dequeue() in C programming language −

int dequeue() {

 if(isempty())

 return 0;

 int data = queue[front];

 front = front + 1;

 return data;

}

For a complete Queue program in C programming language, please click here.

http://www.tutorialspoint.com/data_structures_algorithms/queue_program_in_c.htm

Data Structures & Algorithms

98

Queue Program in C

We shall see the stack implementation in C programming language here. You can try the

program by clicking on the Try-it button. To learn the theory aspect of stacks, click on visit

previous page.

Implementation in C

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <stdbool.h>

#define MAX 6

int intArray[MAX];

int front = 0;

int rear = -1;

int itemCount = 0;

int peek(){

 return intArray[front];

}

bool isEmpty(){

 return itemCount == 0;

}

bool isFull(){

 return itemCount == MAX;

}

int size(){

 return itemCount;

}

void insert(int data){

 if(!isFull()){

Data Structures & Algorithms

99

 if(rear == MAX-1){

 rear = -1;

 }

 intArray[++rear] = data;

 itemCount++;

 }

}

int removeData(){

 int data = intArray[front++];

 if(front == MAX){

 front = 0;

 }

 itemCount--;

 return data;

}

int main() {

 /* insert 5 items */

 insert(3);

 insert(5);

 insert(9);

 insert(1);

 insert(12);

 // front : 0

 // rear : 4

 // ------------------

 // index : 0 1 2 3 4

 // ------------------

 // queue : 3 5 9 1 12

 insert(15);

 // front : 0

 // rear : 5

Data Structures & Algorithms

100

 // ---------------------

 // index : 0 1 2 3 4 5

 // ---------------------

 // queue : 3 5 9 1 12 15

 if(isFull()){

 printf("Queue is full!\n");

 }

 // remove one item

 int num = removeData();

 printf("Element removed: %d\n",num);

 // front : 1

 // rear : 5

 // -------------------

 // index : 1 2 3 4 5

 // -------------------

 // queue : 5 9 1 12 15

 // insert more items

 insert(16);

 // front : 1

 // rear : -1

 // ----------------------

 // index : 0 1 2 3 4 5

 // ----------------------

 // queue : 16 5 9 1 12 15

 // As queue is full, elements will not be inserted.

 insert(17);

 insert(18);

 // ----------------------

 // index : 0 1 2 3 4 5

 // ----------------------

Data Structures & Algorithms

101

 // queue : 16 5 9 1 12 15

 printf("Element at front: %d\n",peek());

 printf("----------------------\n");

 printf("index : 5 4 3 2 1 0\n");

 printf("----------------------\n");

 printf("Queue: ");

 while(!isEmpty()){

 int n = removeData();

 printf("%d ",n);

 }

}

If we compile and run the above program, it will produce the following result −

Queue is full!

Element removed: 3

Element at front: 5

index : 5 4 3 2 1 0

Queue: 5 9 1 12 15 16

Data Structures & Algorithms

102

Searching Techniques

Data Structures & Algorithms

103

Linear search is a very simple search algorithm. In this type of search, a sequential search

is made over all items one by one. Every item is checked and if a match is found then that

particular item is returned, otherwise the search continues till the end of the data
collection.

Algorithm

Linear Search (Array A, Value x)

Step 1: Set i to 1

Step 2: if i > n then go to step 7

Step 3: if A[i] = x then go to step 6

Step 4: Set i to i + 1

Step 5: Go to Step 2

Step 6: Print Element x Found at index i and go to step 8

Step 7: Print element not found

Step 8: Exit

Pseudocode

procedure linear_search (list, value)

 for each item in the list

 if match item == value

 return the item's location

16. Linear Search

Data Structures & Algorithms

104

 end if

 end for

end procedure

To know about linear search implementation in C programming language, please click-

here.

Linear Search Program in C

Here we present the implementation of linear search in C programming language. The

output of the program is given after the code.

Linear Search Program

#include <stdio.h>

#define MAX 20

// array of items on which linear search will be conducted.

int intArray[MAX] = {1,2,3,4,6,7,9,11,12,14,15,16,17,19,33,34,43,45,55,66};

void printline(int count){

 int i;

 for(i = 0;i <count-1;i++){

 printf("=");

 }

 printf("=\n");

}

// this method makes a linear search.

int find(int data){

 int comparisons = 0;

 int index = -1;

 int i;

http://www.tutorialspoint.com/data_structures_algorithms/linear_search_program_in_c.htm
http://www.tutorialspoint.com/data_structures_algorithms/linear_search_program_in_c.htm

Data Structures & Algorithms

105

 // navigate through all items

 for(i = 0;i<MAX;i++){

 // count the comparisons made

 comparisons++;

 // if data found, break the loop

 if(data == intArray[i]){

 index = i;

 break;

 }

 }

 printf("Total comparisons made: %d", comparisons);

 return index;

}

void display(){

 int i;

 printf("[");

 // navigate through all items

 for(i = 0;i<MAX;i++){

 printf("%d ",intArray[i]);

 }

 printf("]\n");

}

main(){

 printf("Input Array: ");

 display();

 printline(50);

Data Structures & Algorithms

106

 //find location of 1

 int location = find(55);

 // if element was found

 if(location != -1)

 printf("\nElement found at location: %d" ,(location+1));

 else

 printf("Element not found.");

}

If we compile and run the above program, it will produce the following result −

Input Array: [1 2 3 4 6 7 9 11 12 14 15 16 17 19 33 34 43 45 55 66]

==

Total comparisons made: 19

Element found at location: 19

Data Structures & Algorithms

107

Binary search is a fast search algorithm with run-time complexity of Ο(log n). This search

algorithm works on the principle of divide and conquer. For this algorithm to work properly,

the data collection should be in the sorted form.

Binary search looks for a particular item by comparing the middle most item of the

collection. If a match occurs, then the index of item is returned. If the middle item is

greater than the item, then the item is searched in the sub-array to the right of the middle

item. Otherwise, the item is searched for in the sub-array to the left of the middle item.

This process continues on the sub-array as well until the size of the subarray reduces to
zero.

How Binary Search Works?

For a binary search to work, it is mandatory for the target array to be sorted. We shall

learn the process of binary search with a pictorial example. The following is our sorted

array and let us assume that we need to search the location of value 31 using binary
search.

First, we shall determine half of the array by using this formula −

mid = low + (high - low) / 2

Here it is, 0 + (9 - 0) / 2 = 4 (integer value of 4.5). So, 4 is the mid of the array.

Now we compare the value stored at location 4, with the value being searched, i.e. 31.

We find that the value at location 4 is 27, which is not a match. As the value is greater

than 27 and we have a sorted array, so we also know that the target value must be in the
upper portion of the array.

17. Binary Search

Data Structures & Algorithms

108

We change our low to mid + 1 and find the new mid value again.

low = mid + 1

mid = low + (high - low) / 2

Our new mid is 7 now. We compare the value stored at location 7 with our target value

31.

The value stored at location 7 is not a match, rather it is less than what we are looking
for. So, the value must be in the lower part from this location.

Hence, we calculate the mid again. This time it is 5.

We compare the value stored at location 5 with our target value. We find that it is a match.

We conclude that the target value 31 is stored at location 5.

Binary search halves the searchable items and thus reduces the count of comparisons to

be made to very less numbers.

Data Structures & Algorithms

109

Pseudocode

The pseudocode of binary search algorithms should look like this −

Procedure binary_search

 A ← sorted array

 n ← size of array

 x ← value ot be searched

 Set lowerBound = 1

 Set upperBound = n

 while x not found

 if upperBound < lowerBound

 EXIT: x does not exists.

 set midPoint = lowerBound + (upperBound - lowerBound) / 2

 if A[midPoint] < x

 set lowerBound = midPoint + 1

 if A[midPoint] > x

 set upperBound = midPoint - 1

 if A[midPoint] = x

 EXIT: x found at location midPoint

 end while

end procedure

To know about binary search implementation using array in C programming language,
please click here.

http://www.tutorialspoint.com/data_structures_algorithms/binary_search_program_in_c.htm

Data Structures & Algorithms

110

Binary Search Program in C

Binary search is a fast search algorithm with run-time complexity of Ο(log n). This search

algorithm works on the principle of divide and conquer. For this algorithm to work properly,

the data collection should be in a sorted form.

Implementation in C

#include <stdio.h>

#define MAX 20

// array of items on which linear search will be conducted.

int intArray[MAX] = {1,2,3,4,6,7,9,11,12,14,15,16,17,19,33,34,43,45,55,66};

void printline(int count){

 int i;

 for(i = 0;i <count-1;i++){

 printf("=");

 }

 printf("=\n");

}

int find(int data){

 int lowerBound = 0;

 int upperBound = MAX -1;

 int midPoint = -1;

 int comparisons = 0;

 int index = -1;

 while(lowerBound <= upperBound){

 printf("Comparison %d\n" , (comparisons +1)) ;

 printf("lowerBound : %d, intArray[%d] = %d\n",

 lowerBound,lowerBound,intArray[lowerBound]);

 printf("upperBound : %d, intArray[%d] = %d\n",
upperBound,upperBound,intArray[upperBound]);

Data Structures & Algorithms

111

 comparisons++;

 // compute the mid point

 // midPoint = (lowerBound + upperBound) / 2;

 midPoint = lowerBound + (upperBound - lowerBound) / 2;

 // data found

 if(intArray[midPoint] == data){

 index = midPoint;

 break;

 }else {

 // if data is larger

 if(intArray[midPoint] < data){

 // data is in upper half

 lowerBound = midPoint + 1;

 }

 // data is smaller

 else{

 // data is in lower half

 upperBound = midPoint -1;

 }

 }

 }

 printf("Total comparisons made: %d" , comparisons);

 return index;

}

void display(){

 int i;

 printf("[");

 // navigate through all items

 for(i = 0;i<MAX;i++){

 printf("%d ",intArray[i]);

 }

 printf("]\n");

Data Structures & Algorithms

112

}

main(){

 printf("Input Array: ");

 display();

 printline(50);

 //find location of 1

 int location = find(55);

 // if element was found

 if(location != -1)

 printf("\nElement found at location: %d" ,(location+1));

 else

 printf("\nElement not found.");

}

If we compile and run the above program, it will produce the following result −

Input Array: [1 2 3 4 6 7 9 11 12 14 15 16 17 19 33 34 43 45 55 66]

==

Comparison 1

lowerBound : 0, intArray[0] = 1

upperBound : 19, intArray[19] = 66

Comparison 2

lowerBound : 10, intArray[10] = 15

upperBound : 19, intArray[19] = 66

Comparison 3

lowerBound : 15, intArray[15] = 34

upperBound : 19, intArray[19] = 66

Comparison 4

lowerBound : 18, intArray[18] = 55

upperBound : 19, intArray[19] = 66

Total comparisons made: 4

Element found at location: 19

Data Structures & Algorithms

113

Interpolation search is an improved variant of binary search. This search algorithm works

on the probing position of the required value. For this algorithm to work properly, the data

collection should be in a sorted form and equally distributed.

Binary search has a huge advantage of time complexity over linear search. Linear search

has worst-case complexity of Ο(n) whereas binary search has Ο(log n).

There are cases where the location of target data may be known in advance. For example,

in case of a telephone directory, if we want to search the telephone number of Morphius.

Here, linear search and even binary search will seem slow as we can directly jump to

memory space where the names start from 'M' are stored.

Positioning in Binary Search

In binary search, if the desired data is not found then the rest of the list is divided in two
parts, lower and higher. The search is carried out in either of them.

Even when the data is sorted, binary search does not take advantage to probe the position

of the desired data.

18. Interpolation Search

Data Structures & Algorithms

114

Position Probing in Interpolation Search

Interpolation search finds a particular item by computing the probe position. Initially, the
probe position is the position of the middle most item of the collection.

If a match occurs, then the index of the item is returned. To split the list into two parts,

we use the following method −

mid = Lo + ((Hi - Lo) / (A[Hi] - A[Lo])) * (X - A[Lo])

where −

 A = list

 Lo = Lowest index of the list

 Hi = Highest index of the list

 A[n] = Value stored at index n in the list

If the middle item is greater than the item, then the probe position is again calculated in

the sub-array to the right of the middle item. Otherwise, the item is searched in the sub-

array to the left of the middle item. This process continues on the sub-array as well until
the size of subarray reduces to zero.

Runtime complexity of interpolation search algorithm is Ο(log (log n)) as compared
to Ο(log n) of BST in favorable situations.

Algorithm

As it is an improvisation of the existing BST algorithm, we are mentioning the steps to

search the 'target' data value index, using position probing −

Step 1 − Start searching data from middle of the list.

Step 2 − If it is a match, return the index of the item, and exit.

Step 3 − If it is not a match, probe position.

Step 4 − Divide the list using probing formula and find the new middle.

Step 5 − If data is greater than middle, search in higher sub-list.

Step 6 − If data is smaller than middle, search in lower sub-list.

Step 7 − Repeat until match.

Data Structures & Algorithms

115

Pseudocode

A → Array list

N → Size of A

X → Target Value

Procedure Interpolation_Search()

 Set Lo → 0

 Set Mid → -1

 Set Hi → N-1

 While X does not match

 if Lo equals to Hi OR A[Lo] equals to A[Hi]

 EXIT: Failure, Target not found

 end if

 Set Mid = Lo + ((Hi - Lo) / (A[Hi] - A[Lo])) * (X - A[Lo])

 if A[Mid] = X

 EXIT: Success, Target found at Mid

 else

 if A[Mid] < X

 Set Lo to Mid+1

 else if A[Mid] > X

 Set Hi to Mid-1

 end if

 end if

 End While

End Procedure

To know about the implementation of interpolation search in C programming

language, click here.

http://www.tutorialspoint.com/data_structures_algorithms/interpolation_search_in_c.htm

Data Structures & Algorithms

116

Interpolation Search Program in C

Interpolation search is an improved variant of binary search. This search algorithm works

on the probing position of the required value. For this algorithm to work properly, the data

collection should be in sorted and equally distributed form.

It's runtime complexity is log2(log2 n).

Implementation in C

#include<stdio.h>

#define MAX 10

// array of items on which linear search will be conducted.

int list[MAX] = { 10, 14, 19, 26, 27, 31, 33, 35, 42, 44 };

int find(int data) {

 int lo = 0;

 int hi = MAX - 1;

 int mid = -1;

 int comparisons = 1;

 int index = -1;

 while(lo <= hi) {

 printf("\nComparison %d \n" , comparisons) ;

 printf("lo : %d, list[%d] = %d\n", lo, lo, list[lo]);

 printf("hi : %d, list[%d] = %d\n", hi, hi, list[hi]);

 comparisons++;

 // probe the mid point

 mid = lo + (((double)(hi - lo) / (list[hi] - list[lo])) * (data - list[lo]));

 printf("mid = %d\n",mid);

 // data found

 if(list[mid] == data) {

 index = mid;

 break;

 }else {

Data Structures & Algorithms

117

 if(list[mid] < data) {

 // if data is larger, data is in upper half

 lo = mid + 1;

 }else {

 // if data is smaller, data is in lower half

 hi = mid - 1;

 }

 }

 }

 printf("\nTotal comparisons made: %d", --comparisons);

 return index;

}

int main() {

 //find location of 33

 int location = find(33);

 // if element was found

 if(location != -1)

 printf("\nElement found at location: %d" ,(location+1));

 else

 printf("Element not found.");

 return 0;

}

If we compile and run the above program, it will produce the following result −

Searching 33

Comparison 1

lo : 0, list[0] = 10

hi : 9, list[9] = 44

mid = 6

Total comparisons made: 1

Element found at location: 7

You can change the search value and execute the program to test it.

Data Structures & Algorithms

118

Hash Table is a data structure which stores data in an associative manner. In a hash table,

data is stored in an array format, where each data value has its own unique index value.

Access of data becomes very fast if we know the index of the desired data.

Thus, it becomes a data structure in which insertion and search operations are very fast

irrespective of the size of the data. Hash Table uses an array as a storage medium and

uses hash technique to generate an index where an element is to be inserted or is to be
located from.

Hashing

Hashing is a technique to convert a range of key values into a range of indexes of an array.

We're going to use modulo operator to get a range of key values. Consider an example of

hash table of size 20, and the following items are to be stored. Item are in the (key,value)
format.

 (1,20)

 (2,70)

 (42,80)

 (4,25)

 (12,44)

 (14,32)

 (17,11)

 (13,78)

 (37,98)

19. Hash Table

Data Structures & Algorithms

119

Sr. No. Key Hash Array Index

1 1 1 % 20 = 1 1

2 2 2 % 20 = 2 2

3 42 42 % 20 = 2 2

4 4 4 % 20 = 4 4

5 12 12 % 20 = 12 12

6 14 14 % 20 = 14 14

7 17 17 % 20 = 17 17

8 13 13 % 20 = 13 13

9 37 37 % 20 = 17 17

Linear Probing

As we can see, it may happen that the hashing technique is used to create an already used

index of the array. In such a case, we can search the next empty location in the array by
looking into the next cell until we find an empty cell. This technique is called linear probing.

Sr. No. Key Hash Array Index

After Linear

Probing,

Array Index

1 1 1 % 20 = 1 1 1

2 2 2 % 20 = 2 2 2

3 42 42 % 20 = 2 2 3

4 4 4 % 20 = 4 4 4

5 12 12 % 20 = 12 12 12

6 14 14 % 20 = 14 14 14

Data Structures & Algorithms

120

7 17 17 % 20 = 17 17 17

8 13 13 % 20 = 13 13 13

9 37 37 % 20 = 17 17 18

Basic Operations

Following are the basic primary operations of a hash table.

 Search − Searches an element in a hash table.

 Insert − inserts an element in a hash table.

 Delete − Deletes an element from a hash table.

Data Item

Define a data item having some data and key, based on which the search is to be

conducted in a hash table.

struct DataItem {

 int data;

 int key;

};

Hash Method

Define a hashing method to compute the hash code of the key of the data item.

int hashCode(int key){

 return key % SIZE;

}

Search Operation

Whenever an element is to be searched, compute the hash code of the key passed and

locate the element using that hash code as index in the array. Use linear probing to get

the element ahead if the element is not found at the computed hash code.

Data Structures & Algorithms

121

struct DataItem *search(int key){

 //get the hash

 int hashIndex = hashCode(key);

 //move in array until an empty

 while(hashArray[hashIndex] != NULL){

 if(hashArray[hashIndex]->key == key)

 return hashArray[hashIndex];

 //go to next cell

 ++hashIndex;

 //wrap around the table

 hashIndex %= SIZE;

 }

 return NULL;

}

Insert Operation

Whenever an element is to be inserted, compute the hash code of the key passed and

locate the index using that hash code as an index in the array. Use linear probing for

empty location, if an element is found at the computed hash code.

void insert(int key,int data){

 struct DataItem *item = (struct DataItem*) malloc(sizeof(struct DataItem));

 item->data = data;

 item->key = key;

 //get the hash

 int hashIndex = hashCode(key);

 //move in array until an empty or deleted cell

 while(hashArray[hashIndex] != NULL && hashArray[hashIndex]->key != -1){

 //go to next cell

 ++hashIndex;

Data Structures & Algorithms

122

 //wrap around the table

 hashIndex %= SIZE;

 }

 hashArray[hashIndex] = item;

}

Delete Operation

Whenever an element is to be deleted, compute the hash code of the key passed and

locate the index using that hash code as an index in the array. Use linear probing to get

the element ahead if an element is not found at the computed hash code. When found,

store a dummy item there to keep the performance of the hash table intact.

struct DataItem* delete(struct DataItem* item){

 int key = item->key;

 //get the hash

 int hashIndex = hashCode(key);

 //move in array until an empty

 while(hashArray[hashIndex] !=NULL){

 if(hashArray[hashIndex]->key == key){

 struct DataItem* temp = hashArray[hashIndex];

 //assign a dummy item at deleted position

 hashArray[hashIndex] = dummyItem;

 return temp;

 }

 //go to next cell

 ++hashIndex;

 //wrap around the table

 hashIndex %= SIZE;

 }

 return NULL;

}

To know about hash implementation in C programming language, please click here.

http://www.tutorialspoint.com/data_structures_algorithms/hash_table_program_in_c.htm

Data Structures & Algorithms

123

Hash Table Program in C

Hash Table is a data structure which stores data in an associative manner. In hash table,

the data is stored in an array format where each data value has its own unique index

value. Access of data becomes very fast, if we know the index of the desired data.

Implementation in C

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <stdbool.h>

#define SIZE 20

struct DataItem {

 int data;

 int key;

};

struct DataItem* hashArray[SIZE];

struct DataItem* dummyItem;

struct DataItem* item;

int hashCode(int key){

 return key % SIZE;

}

struct DataItem *search(int key){

 //get the hash

 int hashIndex = hashCode(key);

 //move in array until an empty

 while(hashArray[hashIndex] != NULL){

 if(hashArray[hashIndex]->key == key)

 return hashArray[hashIndex];

Data Structures & Algorithms

124

 //go to next cell

 ++hashIndex;

 //wrap around the table

 hashIndex %= SIZE;

 }

 return NULL;

}

void insert(int key,int data){

 struct DataItem *item = (struct DataItem*) malloc(sizeof(struct DataItem));

 item->data = data;

 item->key = key;

 //get the hash

 int hashIndex = hashCode(key);

 //move in array until an empty or deleted cell

 while(hashArray[hashIndex] != NULL && hashArray[hashIndex]->key != -1){

 //go to next cell

 ++hashIndex;

 //wrap around the table

 hashIndex %= SIZE;

 }

 hashArray[hashIndex] = item;

}

struct DataItem* delete(struct DataItem* item){

 int key = item->key;

 //get the hash

 int hashIndex = hashCode(key);

Data Structures & Algorithms

125

 //move in array until an empty

 while(hashArray[hashIndex] != NULL){

 if(hashArray[hashIndex]->key == key){

 struct DataItem* temp = hashArray[hashIndex];

 //assign a dummy item at deleted position

 hashArray[hashIndex] = dummyItem;

 return temp;

 }

 //go to next cell

 ++hashIndex;

 //wrap around the table

 hashIndex %= SIZE;

 }

 return NULL;

}

void display(){

 int i = 0;

 for(i = 0; i<SIZE; i++) {

 if(hashArray[i] != NULL)

 printf(" (%d,%d)",hashArray[i]->key,hashArray[i]->data);

 else

 printf(" ~~ ");

 }

 printf("\n");

}

Data Structures & Algorithms

126

int main(){

 dummyItem = (struct DataItem*) malloc(sizeof(struct DataItem));

 dummyItem->data = -1;

 dummyItem->key = -1;

 insert(1, 20);

 insert(2, 70);

 insert(42, 80);

 insert(4, 25);

 insert(12, 44);

 insert(14, 32);

 insert(17, 11);

 insert(13, 78);

 insert(37, 97);

 display();

 item = search(37);

 if(item != NULL){

 printf("Element found: %d\n", item->data);

 }else {

 printf("Element not found\n");

 }

 delete(item);

 item = search(37);

 if(item != NULL){

 printf("Element found: %d\n", item->data);

 }else {

 printf("Element not found\n");

 }

}

Data Structures & Algorithms

127

If we compile and run the above program, it will produce the following result −

 ~~ (1,20) (2,70) (42,80) (4,25) ~~ ~~ ~~ ~~ ~~ ~~ ~~ (12,44)
(13,78) (14,32) ~~ ~~ (17,11) (37,97) ~~

Element found: 97

Element not found

Data Structures & Algorithms

128

Sorting Techniques

Data Structures & Algorithms

129

Sorting refers to arranging data in a particular format. Sorting algorithm specifies the way

to arrange data in a particular order. Most common orders are in numerical or

lexicographical order.

The importance of sorting lies in the fact that data searching can be optimized to a very

high level, if data is stored in a sorted manner. Sorting is also used to represent data in

more readable formats. Following are some of the examples of sorting in real-life
scenarios:

 Telephone Directory – The telephone directory stores the telephone numbers of

people sorted by their names, so that the names can be searched easily.

 Dictionary – The dictionary stores words in an alphabetical order so that

searching of any word becomes easy.

In-place Sorting and Not-in-place Sorting

Sorting algorithms may require some extra space for comparison and temporary storage

of few data elements. These algorithms do not require any extra space and sorting is said

to happen in-place, or for example, within the array itself. This is called in-place sorting.
Bubble sort is an example of in-place sorting.

However, in some sorting algorithms, the program requires space which is more than or

equal to the elements being sorted. Sorting which uses equal or more space is called not-

in-place sorting. Merge-sort is an example of not-in-place sorting.

Stable and Not Stable Sorting

If a sorting algorithm, after sorting the contents, does not change the sequence of similar
content in which they appear, it is called stable sorting.

20. Sorting Algorithm

Data Structures & Algorithms

130

If a sorting algorithm, after sorting the contents, changes the sequence of similar content
in which they appear, it is called unstable sorting.

Stability of an algorithm matters when we wish to maintain the sequence of original
elements, like in a tuple for example.

Adaptive and Non-Adaptive Sorting Algorithm

A sorting algorithm is said to be adaptive, if it takes advantage of already 'sorted' elements

in the list that is to be sorted. That is, while sorting if the source list has some element

already sorted, adaptive algorithms will take this into account and will try not to re-order
them.

A non-adaptive algorithm is one which does not take into account the elements which are

already sorted. They try to force every single element to be re-ordered to confirm their

sortedness.

Important Terms

Some terms are generally coined while discussing sorting techniques, here is a brief
introduction to them −

Increasing Order

A sequence of values is said to be in increasing order, if the successive element is greater

than the previous one. For example, 1, 3, 4, 6, 8, 9 are in increasing order, as every next
element is greater than the previous element.

Decreasing Order

A sequence of values is said to be in decreasing order, if the successive element is less

than the current one. For example, 9, 8, 6, 4, 3, 1 are in decreasing order, as every next
element is less than the previous element.

Data Structures & Algorithms

131

Non-Increasing Order

A sequence of values is said to be in non-increasing order, if the successive element is

less than or equal to its previous element in the sequence. This order occurs when the

sequence contains duplicate values. For example, 9, 8, 6, 3, 3, 1 are in non-increasing

order, as every next element is less than or equal to (in case of 3) but not greater than
any previous element.

Non-Decreasing Order

A sequence of values is said to be in non-decreasing order, if the successive element is

greater than or equal to its previous element in the sequence. This order occurs when the

sequence contains duplicate values. For example, 1, 3, 3, 6, 8, 9 are in non-decreasing

order, as every next element is greater than or equal to (in case of 3) but not less than
the previous one.

Data Structures & Algorithms

132

Bubble sort is a simple sorting algorithm. This sorting algorithm is comparison-based

algorithm in which each pair of adjacent elements is compared and the elements are

swapped if they are not in order. This algorithm is not suitable for large data sets as its
average and worst case complexity are of O(n2) where n is the number of items.

How Bubble Sort Works?

We take an unsorted array for our example. Bubble sort takes Ο(n2) time so we're keeping
it short and precise.

Bubble sort starts with very first two elements, comparing them to check which one is
greater.

In this case, value 33 is greater than 14, so it is already in sorted locations. Next, we
compare 33 with 27.

We find that 27 is smaller than 33 and these two values must be swapped.

21. Bubble Sort Algorithm

Data Structures & Algorithms

133

The new array should look like this −

Next we compare 33 and 35. We find that both are in already sorted positions.

Then we move to the next two values, 35 and 10.

We know then that 10 is smaller 35. Hence they are not sorted.

We swap these values. We find that we have reached the end of the array. After one
iteration, the array should look like this −

Data Structures & Algorithms

134

To be precise, we are now showing how an array should look like after each iteration. After
the second iteration, it should look like this −

Notice that after each iteration, at least one value moves at the end.

And when there's no swap required, bubble sorts learns that an array is completely sorted.

Now we should look into some practical aspects of bubble sort.

Data Structures & Algorithms

135

Algorithm

We assume list is an array of n elements. We further assume that swap function swaps
the values of the given array elements.

begin BubbleSort(list)

 for all elements of list

 if list[i] > list[i+1]

 swap(list[i], list[i+1])

 end if

 end for

 return list

end BubbleSort

Pseudocode

We observe in algorithm that Bubble Sort compares each pair of array element unless the

whole array is completely sorted in an ascending order. This may cause a few complexity

issues like what if the array needs no more swapping as all the elements are already

ascending.

To ease-out the issue, we use one flag variable swapped which will help us see if any

swap has happened or not. If no swap has occurred, i.e. the array requires no more
processing to be sorted, it will come out of the loop.

Pseudocode of BubbleSort algorithm can be written as follows −

procedure bubbleSort(list : array of items)

 loop = list.count;

 for i = 0 to loop-1 do:

 swapped = false

 for j = 0 to loop-1 do:

 /* compare the adjacent elements */

 if list[j] > list[j+1] then

 /* swap them */

 swap(list[j], list[j+1])

Data Structures & Algorithms

136

 swapped = true

 end if

 end for

 /*if no number was swapped that means

 array is sorted now, break the loop.*/

 if(not swapped) then

 break

 end if

 end for

end procedure return list

Implementation

One more issue we did not address in our original algorithm and its improvised

pseudocode, is that, after every iteration the highest values settles down at the end of the

array. Hence, the next iteration need not include already sorted elements. For this
purpose, in our implementation, we restrict the inner loop to avoid already sorted values.

To know about bubble sort implementation in C programming language, please click here.

Bubble Sort Program in C

We shall see the implementation of bubble sort in C programming language here.

Implementation in C

#include <stdio.h>

#include <stdbool.h>

#define MAX 10

int list[MAX] = {1,8,4,6,0,3,5,2,7,9};

void display(){

 int i;

 printf("[");

http://www.tutorialspoint.com/data_structures_algorithms/bubble_sort_program_in_c.htm

Data Structures & Algorithms

137

 // navigate through all items

 for(i = 0; i < MAX; i++){

 printf("%d ",list[i]);

 }

 printf("]\n");

}

void bubbleSort() {

 int temp;

 int i,j;

 bool swapped = false;

 // loop through all numbers

 for(i = 0; i < MAX-1; i++) {

 swapped = false;

 // loop through numbers falling ahead

 for(j = 0; j < MAX-1-i; j++) {

 printf(" Items compared: [%d, %d] ", list[j],list[j+1]);

 // check if next number is lesser than current no

 // swap the numbers.

 // (Bubble up the highest number)

 if(list[j] > list[j+1]) {

 temp = list[j];

 list[j] = list[j+1];

 list[j+1] = temp;

 swapped = true;

 printf(" => swapped [%d, %d]\n",list[j],list[j+1]);

 }else {

 printf(" => not swapped\n");

 }

Data Structures & Algorithms

138

 }

 // if no number was swapped that means

 // array is sorted now, break the loop.

 if(!swapped) {

 break;

 }

 printf("Iteration %d#: ",(i+1));

 display();

 }

}

main(){

 printf("Input Array: ");

 display();

 printf("\n");

 bubbleSort();

 printf("\nOutput Array: ");

 display();

}

If we compile and run the above program, it will produce the following result −

Input Array: [1 8 4 6 0 3 5 2 7 9]

 Items compared: [1, 8] => not swapped

 Items compared: [8, 4] => swapped [4, 8]

 Items compared: [8, 6] => swapped [6, 8]

 Items compared: [8, 0] => swapped [0, 8]

 Items compared: [8, 3] => swapped [3, 8]

 Items compared: [8, 5] => swapped [5, 8]

 Items compared: [8, 2] => swapped [2, 8]

 Items compared: [8, 7] => swapped [7, 8]

 Items compared: [8, 9] => not swapped

Data Structures & Algorithms

139

Iteration 1#: [1 4 6 0 3 5 2 7 8 9]

 Items compared: [1, 4] => not swapped

 Items compared: [4, 6] => not swapped

 Items compared: [6, 0] => swapped [0, 6]

 Items compared: [6, 3] => swapped [3, 6]

 Items compared: [6, 5] => swapped [5, 6]

 Items compared: [6, 2] => swapped [2, 6]

 Items compared: [6, 7] => not swapped

 Items compared: [7, 8] => not swapped

Iteration 2#: [1 4 0 3 5 2 6 7 8 9]

 Items compared: [1, 4] => not swapped

 Items compared: [4, 0] => swapped [0, 4]

 Items compared: [4, 3] => swapped [3, 4]

 Items compared: [4, 5] => not swapped

 Items compared: [5, 2] => swapped [2, 5]

 Items compared: [5, 6] => not swapped

 Items compared: [6, 7] => not swapped

Iteration 3#: [1 0 3 4 2 5 6 7 8 9]

 Items compared: [1, 0] => swapped [0, 1]

 Items compared: [1, 3] => not swapped

 Items compared: [3, 4] => not swapped

 Items compared: [4, 2] => swapped [2, 4]

 Items compared: [4, 5] => not swapped

 Items compared: [5, 6] => not swapped

Iteration 4#: [0 1 3 2 4 5 6 7 8 9]

 Items compared: [0, 1] => not swapped

 Items compared: [1, 3] => not swapped

 Items compared: [3, 2] => swapped [2, 3]

 Items compared: [3, 4] => not swapped

 Items compared: [4, 5] => not swapped

Iteration 5#: [0 1 2 3 4 5 6 7 8 9]

 Items compared: [0, 1] => not swapped

 Items compared: [1, 2] => not swapped

 Items compared: [2, 3] => not swapped

 Items compared: [3, 4] => not swapped

Output Array: [0 1 2 3 4 5 6 7 8 9]

Data Structures & Algorithms

140

This is an in-place comparison-based sorting algorithm. Here, a sub-list is maintained

which is always sorted. For example, the lower part of an array is maintained to be sorted.

An element which is to be 'insert'ed in this sorted sub-list, has to find its appropriate place
and then it has to be inserted there. Hence the name, insertion sort.

The array is searched sequentially and unsorted items are moved and inserted into the

sorted sub-list (in the same array). This algorithm is not suitable for large data sets as its
average and worst case complexity are of Ο(n2), where n is the number of items.

How Insertion Sort Works?

We take an unsorted array for our example.

Insertion sort compares the first two elements.

It finds that both 14 and 33 are already in ascending order. For now, 14 is in sorted sub-
list.

Insertion sort moves ahead and compares 33 with 27.

And finds that 33 is not in the correct position.

22. Insertion Sort

Data Structures & Algorithms

141

It swaps 33 with 27. It also checks with all the elements of sorted sub-list. Here we see

that the sorted sub-list has only one element 14, and 27 is greater than 14. Hence, the

sorted sub-list remains sorted after swapping.

By now we have 14 and 27 in the sorted sub-list. Next, it compares 33 with 10.

These values are not in a sorted order.

So we swap them.

However, swapping makes 27 and 10 unsorted.

Hence, we swap them too.

Again we find 14 and 10 in an unsorted order.

Data Structures & Algorithms

142

We swap them again. By the end of third iteration, we have a sorted sub-list of 4 items.

This process goes on until all the unsorted values are covered in a sorted sub-list. Now we
shall see some programming aspects of insertion sort.

Algorithm

Now we have a bigger picture of how this sorting technique works, so we can derive simple

steps by which we can achieve insertion sort.

Step 1 − If it is the first element, it is already sorted. return 1;

Step 2 − Pick next element

Step 3 − Compare with all elements in the sorted sub-list

Step 4 − Shift all the elements in the sorted sub-list that is greater than the
value to be sorted

Step 5 − Insert the value

Step 6 − Repeat until list is sorted

Pseudocode

procedure insertionSort(A : array of items)

 int holePosition

 int valueToInsert

 for i = 1 to length(A) inclusive do:

 /* select value to be inserted */

 valueToInsert = A[i]

 holePosition = i

Data Structures & Algorithms

143

 /*locate hole position for the element to be inserted */

 while holePosition > 0 and A[holePosition-1] > valueToInsert do:

 A[holePosition] = A[holePosition-1]

 holePosition = holePosition -1

 end while

 /* insert the number at hole position */

 A[holePosition] = valueToInsert

 end for

end procedure

To know about insertion sort implementation in C programming language, please click

here.

Insertion Sort Program in C

This is an in-place comparison-based sorting algorithm. Here, a sub-list is maintained

which is always sorted. For example, the lower part of an array is maintained to be sorted.

An element which is to be 'insert'ed in this sorted sub-list, has to find its appropriate place

and then it is to be inserted there. Hence the name insertion sort.

Implementation in C

#include <stdio.h>

#include <stdbool.h>

#define MAX 7

int intArray[MAX] = {4,6,3,2,1,9,7};

void printline(int count){

 int i;

 for(i = 0;i <count-1;i++){

 printf("=");

 }

http://www.tutorialspoint.com/data_structures_algorithms/insertion_sort_program_in_c.htm
http://www.tutorialspoint.com/data_structures_algorithms/insertion_sort_program_in_c.htm

Data Structures & Algorithms

144

 printf("=\n");

}

void display(){

 int i;

 printf("[");

 // navigate through all items

 for(i = 0;i<MAX;i++){

 printf("%d ",intArray[i]);

 }

 printf("]\n");

}

void insertionSort(){

 int valueToInsert;

 int holePosition;

 int i;

 // loop through all numbers

 for(i = 1; i < MAX; i++){

 // select a value to be inserted.

 valueToInsert = intArray[i];

 // select the hole position where number is to be inserted

 holePosition = i;

 // check if previous no. is larger than value to be inserted

 while (holePosition > 0 && intArray[holePosition-1] > valueToInsert){

 intArray[holePosition] = intArray[holePosition-1];

 holePosition--;

 printf(" item moved : %d\n" , intArray[holePosition]);

 }

Data Structures & Algorithms

145

 if(holePosition != i){

 printf(" item inserted : %d, at position : %d\n" ,
valueToInsert,holePosition);

 // insert the number at hole position

 intArray[holePosition] = valueToInsert;

 }

 printf("Iteration %d#:",i);

 display();

 }

}

main(){

 printf("Input Array: ");

 display();

 printline(50);

 insertionSort();

 printf("Output Array: ");

 display();

 printline(50);

}

If we compile and run the above program, it will produce the following result −

Input Array: [4, 6, 3, 2, 1, 9, 7]

==

iteration 1#: [4, 6, 3, 2, 1, 9, 7]

 item moved :6

 item moved :4

 item inserted :3, at position :0

iteration 2#: [3, 4, 6, 2, 1, 9, 7]

 item moved :6

 item moved :4

 item moved :3

 item inserted :2, at position :0

iteration 3#: [2, 3, 4, 6, 1, 9, 7]

 item moved :6

 item moved :4

Data Structures & Algorithms

146

 item moved :3

 item moved :2

 item inserted :1, at position :0

iteration 4#: [1, 2, 3, 4, 6, 9, 7]

 iteration 5#: [1, 2, 3, 4, 6, 9, 7]

 item moved :9

 item moved :6

 item inserted :7, at position :4

iteration 6#: [1, 2, 3, 4, 7, 6, 9]

Output Array: [1, 2, 3, 4, 7, 6, 9]

==

Data Structures & Algorithms

147

Selection sort is a simple sorting algorithm. This sorting algorithm is an in-place

comparison-based algorithm in which the list is divided into two parts, the sorted part at

the left end and the unsorted part at the right end. Initially, the sorted part is empty and
the unsorted part is the entire list.

The smallest element is selected from the unsorted array and swapped with the leftmost

element, and that element becomes a part of the sorted array. This process continues
moving unsorted array boundary by one element to the right.

This algorithm is not suitable for large data sets as its average and worst case complexities

are of O(n2), where n is the number of items.

How Selection Sort Works?

Consider the following depicted array as an example.

For the first position in the sorted list, the whole list is scanned sequentially. The first

position where 14 is stored presently, we search the whole list and find that 10 is the
lowest value.

So we replace 14 with 10. After one iteration 10, which happens to be the minimum value
in the list, appears in the first position of the sorted list.

For the second position, where 33 is residing, we start scanning the rest of the list in a

linear manner.

We find that 14 is the second lowest value in the list and it should appear at the second

place. We swap these values.

23. Selection Sort

Data Structures & Algorithms

148

After two iterations, two least values are positioned at the beginning in a sorted manner.

The same process is applied to the rest of the items in the array.

Following is a pictorial depiction of the entire sorting process −

Data Structures & Algorithms

149

Now, let us learn some programming aspects of selection sort.

Algorithm

Step 1 − Set MIN to location 0

Step 2 − Search the minimum element in the list

Step 3 − Swap with value at location MIN

Step 4 − Increment MIN to point to next element

Step 5 − Repeat until list is sorted

Pseudocode

procedure selection sort

 list : array of items

 n : size of list

 for i = 1 to n - 1

 /* set current element as minimum*/

 min = i

 /* check the element to be minimum */

 for j = i+1 to n

 if list[j] < list[min] then

 min = j;

 end if

 end for

 /* swap the minimum element with the current element*/

 if indexMin != i then

 swap list[min] and list[i]

 end if

 end for

end procedure

To know about selection sort implementation in C programming language, please click

here.

http://www.tutorialspoint.com/data_structures_algorithms/selection_sort_program_in_c.htm
http://www.tutorialspoint.com/data_structures_algorithms/selection_sort_program_in_c.htm

Data Structures & Algorithms

150

Selection Sort Program in C

Selection sort is a simple sorting algorithm. This sorting algorithm is an in-place

comparison-based algorithm in which the list is divided into two parts, the sorted part at

the left end and the unsorted part at the right end. Initially, the sorted part is empty and
the unsorted part is the entire list.

Implementation in C

#include <stdio.h>

#include <stdbool.h>

#define MAX 7

int intArray[MAX] = {4,6,3,2,1,9,7};

void printline(int count){

 int i;

 for(i = 0;i <count-1;i++){

 printf("=");

 }

 printf("=\n");

}

void display(){

 int i;

 printf("[");

 // navigate through all items

 for(i = 0;i<MAX;i++){

 printf("%d ", intArray[i]);

 }

Data Structures & Algorithms

151

 printf("]\n");

}

void selectionSort(){

 int indexMin,i,j;

 // loop through all numbers

 for(i = 0; i < MAX-1; i++){

 // set current element as minimum

 indexMin = i;

 // check the element to be minimum

 for(j = i+1;j<MAX;j++){

 if(intArray[j] < intArray[indexMin]){

 indexMin = j;

 }

 }

 if(indexMin != i){

 printf("Items swapped: [%d, %d]\n" , intArray[i],
intArray[indexMin]);

 // swap the numbers

 int temp = intArray[indexMin];

 intArray[indexMin] = intArray[i];

 intArray[i] = temp;

 }

 printf("Iteration %d#:",(i+1));

 display();

 }

}

Data Structures & Algorithms

152

main(){

 printf("Input Array: ");

 display();

 printline(50);

 selectionSort();

 printf("Output Array: ");

 display();

 printline(50);

}

If we compile and run the above program, it will produce the following result −

Input Array: [4, 6, 3, 2, 1, 9, 7]

==

 Items swapped: [4, 1]

iteration 1#: [1, 6, 3, 2, 4, 9, 7]

 Items swapped: [6, 2]

iteration 2#: [1, 2, 3, 6, 4, 9, 7]

iteration 3#: [1, 2, 3, 6, 4, 9, 7]

 Items swapped: [6, 4]

iteration 4#: [1, 2, 3, 4, 6, 9, 7]

iteration 5#: [1, 2, 3, 4, 6, 9, 7]

 Items swapped: [9, 7]

iteration 6#: [1, 2, 3, 4, 6, 7, 9]

Output Array: [1, 2, 3, 4, 6, 7, 9]

==

Data Structures & Algorithms

153

Merge sort is a sorting technique based on divide and conquer technique. With worst-case
time complexity being Ο(n log n), it is one of the most respected algorithms.

Merge sort first divides the array into equal halves and then combines them in a sorted
manner.

How Merge Sort Works?

To understand merge sort, we take an unsorted array as the following −

We know that merge sort first divides the whole array iteratively into equal halves unless

the atomic values are achieved. We see here that an array of 8 items is divided into two
arrays of size 4.

This does not change the sequence of appearance of items in the original. Now we divide
these two arrays into halves.

We further divide these arrays and we achieve atomic value which can no more be divided.

Now, we combine them in exactly the same manner as they were broken down. Please

note the color codes given to these lists.

We first compare the element for each list and then combine them into another list in a

sorted manner. We see that 14 and 33 are in sorted positions. We compare 27 and 10 and

in the target list of 2 values we put 10 first, followed by 27. We change the order of 19
and 35 whereas 42 and 44 are placed sequentially.

24. Merge Sort Algorithm

Data Structures & Algorithms

154

In the next iteration of the combining phase, we compare lists of two data values, and
merge them into a list of found data values placing all in a sorted order.

After the final merging, the list should look like this −

Now we should learn some programming aspects of merge sorting.

Algorithm

Merge sort keeps on dividing the list into equal halves until it can no more be divided. By

definition, if it is only one element in the list, it is sorted. Then, merge sort combines the
smaller sorted lists keeping the new list sorted too.

Step 1 − if it is only one element in the list it is already sorted, return.

Step 2 − divide the list recursively into two halves until it can no more be
divided.

Step 3 − merge the smaller lists into new list in sorted order.

Pseudocode

We shall now see the pseudocodes for merge sort functions. As our algorithms point out
two main functions − divide & merge.

Merge sort works with recursion and we shall see our implementation in the same way.

procedure mergesort(var a as array)

 if (n == 1) return a

 var l1 as array = a[0] ... a[n/2]

 var l2 as array = a[n/2+1] ... a[n]

 l1 = mergesort(l1)

Data Structures & Algorithms

155

 l2 = mergesort(l2)

 return merge(l1, l2)

end procedure

procedure merge(var a as array, var b as array)

 var c as array

 while (a and b have elements)

 if (a[0] > b[0])

 add b[0] to the end of c

 remove b[0] from b

 else

 add a[0] to the end of c

 remove a[0] from a

 end if

 end while

 while (a has elements)

 add a[0] to the end of c

 remove a[0] from a

 end while

 while (b has elements)

 add b[0] to the end of c

 remove b[0] from b

 end while

 return c

end procedure

To know about merge sort implementation in C programming language, please click here.

http://www.tutorialspoint.com/data_structures_algorithms/merge_sort_program_in_c.htm

Data Structures & Algorithms

156

Merge Sort Program in C

Merge sort is a sorting technique based on divide and conquer technique. With the worst-
case time complexity being Ο(n log n), it is one of the most respected algorithms.

Implementation in C

We shall see the implementation of merge sort in C programming language here −

#include <stdio.h>

#define max 10

int a[10] = { 10, 14, 19, 26, 27, 31, 33, 35, 42, 44 };

int b[10];

void merging(int low, int mid, int high) {

 int l1, l2, i;

 for(l1 = low, l2 = mid + 1, i = low; l1 <= mid && l2 <= high; i++) {

 if(a[l1] <= a[l2])

 b[i] = a[l1++];

 else

 b[i] = a[l2++];

 }

 while(l1 <= mid)

 b[i++] = a[l1++];

 while(l2 <= high)

 b[i++] = a[l2++];

 for(i = low; i <= high; i++)

 a[i] = b[i];

}

void sort(int low, int high) {

 int mid;

 if(low < high) {

Data Structures & Algorithms

157

 mid = (low + high) / 2;

 sort(low, mid);

 sort(mid+1, high);

 merging(low, mid, high);

 }else {

 return;

 }

}

int main() {

 int i;

 printf("List before sorting\n");

 for(i = 0; i <= max; i++)

 printf("%d ", a[i]);

 sort(0, max);

 printf("\nList after sorting\n");

 for(i = 0; i <= max; i++)

 printf("%d ", a[i]);

}

If we compile and run the above program, it will produce the following result −

List before sorting

10 14 19 26 27 31 33 35 42 44 0

List after sorting

0 10 14 19 26 27 31 33 35 42 44

Data Structures & Algorithms

158

Shell sort is a highly efficient sorting algorithm and is based on insertion sort algorithm.

This algorithm avoids large shifts as in case of insertion sort, if the smaller value is to the

far right and has to be moved to the far left.

This algorithm uses insertion sort on a widely spread elements, first to sort them and then

sorts the less widely spaced elements. This spacing is termed as interval. This interval is
calculated based on Knuth's formula as −

h = h * 3 + 1

where −

 h is interval with initial value 1

This algorithm is quite efficient for medium-sized data sets as its average and worst case
complexity are of O(n), where n is the number of items.

How Shell Sort Works?

Let us consider the following example to have an idea of how shell sort works. We take

the same array we have used in our previous examples. For our example and ease of

understanding, we take the interval of 4. Make a virtual sub-list of all values located at

the interval of 4 positions. Here these values are {35, 14}, {33, 19}, {42, 27} and {10,
14}

25. Shell Sort

Data Structures & Algorithms

159

We compare values in each sub-list and swap them (if necessary) in the original array.
After this step, the new array should look like this −

Then, we take interval of 2 and this gap generates two sub-lists - {14, 27, 35, 42}, {19,

10, 33, 44}

We compare and swap the values, if required, in the original array. After this step, the
array should look like this −

Finally, we sort the rest of the array using interval of value 1. Shell sort uses insertion sort
to sort the array.

Data Structures & Algorithms

160

Following is the step-by-step depiction −

Data Structures & Algorithms

161

We see that it required only four swaps to sort the rest of the array.

Algorithm

Following is the algorithm for shell sort.

Step 1 − Initialize the value of h

Step 2 − Divide the list into smaller sub-list of equal interval h

Step 3 − Sort these sub-lists using insertion sort

Step 3 − Repeat until complete list is sorted

Pseudocode

Following is the pseudocode for shell sort.

procedure shellSort()

 A : array of items

 /* calculate interval*/

 while interval < A.length /3 do:

 interval = interval * 3 + 1

 end while

 while interval > 0 do:

 for outer = interval; outer < A.length; outer ++ do:

 /* select value to be inserted */

 valueToInsert = A[outer]

 inner = outer;

 /*shift element towards right*/

 while inner > interval -1 && A[inner - interval] >= valueToInsert do:

 A[inner] = A[inner - interval]

 inner = inner - interval

 end while

Data Structures & Algorithms

162

 /* insert the number at hole position */

 A[inner] = valueToInsert

 end for

 /* calculate interval*/

 interval = (interval -1) /3;

 end while

end procedure

To know about shell sort implementation in C programming language, please click here.

Shell Sort Program in C

Shell sort is a highly efficient sorting algorithm and is based on insertion sort algorithm.

This algorithm avoids large shifts as in case of insertion sort, if the smaller value is to the
far right and has to be moved to the far left.

Implementation in C

#include <stdio.h>

#include <stdbool.h>

#define MAX 7

int intArray[MAX] = {4,6,3,2,1,9,7};

void printline(int count){

 int i;

 for(i = 0;i <count-1;i++){

 printf("=");

 }

 printf("=\n");

}

http://www.tutorialspoint.com/data_structures_algorithms/shell_sort_program_in_c.htm

Data Structures & Algorithms

163

void display(){

 int i;

 printf("[");

 // navigate through all items

 for(i = 0;i<MAX;i++){

 printf("%d ",intArray[i]);

 }

 printf("]\n");

}

void shellSort(){

 int inner, outer;

 int valueToInsert;

 int interval = 1;

 int elements = MAX;

 int i = 0;

 while(interval <= elements/3) {

 interval = interval*3 +1;

 }

 while(interval > 0) {

 printf("iteration %d#:",i);

 display();

 for(outer = interval; outer < elements; outer++) {

 valueToInsert = intArray[outer];

 inner = outer;

 while(inner > interval -1 && intArray[inner - interval]

 >= valueToInsert) {

 intArray[inner] = intArray[inner - interval];

 inner -=interval;

 printf(" item moved :%d\n",intArray[inner]);

 }

Data Structures & Algorithms

164

 intArray[inner] = valueToInsert;

 printf(" item inserted :%d, at position :%d\n",valueToInsert,inner);

 }

 interval = (interval -1) /3;

 i++;

 }

}

int main() {

 printf("Input Array: ");

 display();

 printline(50);

 shellSort();

 printf("Output Array: ");

 display();

 printline(50);

 return 1;

}

If we compile and run the above program, it will produce the following result −

Input Array: [4, 6, 3, 2, 1, 9, 7]

==

iteration 0#: [4, 6, 3, 2, 1, 9, 7]

 item moved :4

 item inserted :1, at position :0

 item inserted :9, at position :5

 item inserted :7, at position :6

iteration 1#: [1, 6, 3, 2, 4, 9, 7]

 item inserted :6, at position :1

 item moved :6

 item inserted :3, at position :1

 item moved :6

 item moved :3

Data Structures & Algorithms

165

 item inserted :2, at position :1

 item moved :6

 item inserted :4, at position :3

 item inserted :9, at position :5

 item moved :9

 item inserted :7, at position :5

Output Array: [1, 2, 3, 4, 6, 7, 9]

==

Data Structures & Algorithms

166

Quick sort is a highly efficient sorting algorithm and is based on partitioning of array of

data into smaller arrays. A large array is partitioned into two arrays one of which holds

values smaller than the specified value, say pivot, based on which the partition is made
and another array holds values greater than the pivot value.

Quick sort partitions an array and then calls itself recursively twice to sort the two resulting

subarrays. This algorithm is quite efficient for large-sized data sets as its average and
worst case complexity are of O(nlogn), where n is the number of items.

Partition in Quick Sort

Following animated representation explains how to find the pivot value in an array.

The pivot value divides the list into two parts. And recursively, we find the pivot for each
sub-lists until all lists contains only one element.

Quick Sort Pivot Algorithm

Based on our understanding of partitioning in quick sort, we will now try to write an

algorithm for it, which is as follows.

Step 1 − Choose the highest index value has pivot

Step 2 − Take two variables to point left and right of the list excluding pivot

Step 3 − left points to the low index

Step 4 − right points to the high

Step 5 − while value at left is less than pivot move right

Step 6 − while value at right is greater than pivot move left

Step 7 − if both step 5 and step 6 does not match swap left and right

Step 8 − if left ≥ right, the point where they met is new pivot

26. Quick Sort

Data Structures & Algorithms

167

Quick Sort Pivot Pseudocode

The pseudocode for the above algorithm can be derived as −

function partitionFunc(left, right, pivot)

 leftPointer = left -1

 rightPointer = right

 while True do

 while A[++leftPointer] < pivot do

 //do-nothing

 end while

 while rightPointer > 0 && A[--rightPointer] > pivot do

 //do-nothing

 end while

 if leftPointer >= rightPointer

 break

 else

 swap leftPointer,rightPointer

 end if

 end while

 swap leftPointer,right

 return leftPointer

end function

Quick Sort Algorithm

Using pivot algorithm recursively, we end up with smaller possible partitions. Each

partition is then processed for quick sort. We define recursive algorithm for quicksort as
follows −

Step 1 − Make the right-most index value pivot

Step 2 − partition the array using pivot value

Step 3 − quicksort left partition recursively

Step 4 − quicksort right partition recursively

Data Structures & Algorithms

168

Quick Sort Pseudocode

To get more into it, let see the pseudocode for quick sort algorithm −

procedure quickSort(left, right)

 if right-left <= 0

 return

 else

 pivot = A[right]

 partition = partitionFunc(left, right, pivot)

 quickSort(left,partition-1)

 quickSort(partition+1,right)

 end if

end procedure

To know about quick sort implementation in C programming language, please click here.

Quick Sort Program in C

Quick sort is a highly efficient sorting algorithm and is based on partitioning of array of

data into smaller arrays. A large array is partitioned into two arrays one of which holds

values smaller than the specified value, say pivot, based on which the partition is made
and another array holds values greater than the pivot value.

Implementation in C

#include <stdio.h>

#include <stdbool.h>

#define MAX 7

int intArray[MAX] = {4,6,3,2,1,9,7};

void printline(int count){

 int i;

 for(i = 0;i <count-1;i++){

 printf("=");

 }

 printf("=\n");

http://www.tutorialspoint.com/data_structures_algorithms/quick_sort_program_in_c.htm

Data Structures & Algorithms

169

}

void display(){

 int i;

 printf("[");

 // navigate through all items

 for(i = 0;i<MAX;i++){

 printf("%d ",intArray[i]);

 }

 printf("]\n");

}

void swap(int num1, int num2){

 int temp = intArray[num1];

 intArray[num1] = intArray[num2];

 intArray[num2] = temp;

}

int partition(int left, int right, int pivot){

 int leftPointer = left -1;

 int rightPointer = right;

 while(true){

 while(intArray[++leftPointer] < pivot){

 //do nothing

 }

 while(rightPointer > 0 && intArray[--rightPointer] > pivot){

 //do nothing

 }

 if(leftPointer >= rightPointer){

 break;

 }else{

 printf(" item swapped :%d,%d\n",

Data Structures & Algorithms

170

 intArray[leftPointer],intArray[rightPointer]);

 swap(leftPointer,rightPointer);

 }

 }

 printf(" pivot swapped :%d,%d\n", intArray[leftPointer],intArray[right]);

 swap(leftPointer,right);

 printf("Updated Array: ");

 display();

 return leftPointer;

}

void quickSort(int left, int right){

 if(right-left <= 0){

 return;

 }else {

 int pivot = intArray[right];

 int partitionPoint = partition(left, right, pivot);

 quickSort(left,partitionPoint-1);

 quickSort(partitionPoint+1,right);

 }

}

main(){

 printf("Input Array: ");

 display();

 printline(50);

 quickSort(0,MAX-1);

 printf("Output Array: ");

 display();

 printline(50);

}

If we compile and run the above program, it will produce the following result −

Data Structures & Algorithms

171

Input Array: [4 6 3 2 1 9 7]

==

 pivot swapped :9,7

Updated Array: [4 6 3 2 1 7 9]

 pivot swapped :4,1

Updated Array: [1 6 3 2 4 7 9]

 item swapped :6,2

 pivot swapped :6,4

Updated Array: [1 2 3 4 6 7 9]

 pivot swapped :3,3

Updated Array: [1 2 3 4 6 7 9]

Output Array: [1 2 3 4 6 7 9]

==

Data Structures & Algorithms

172

Graph Data Structure

Data Structures & Algorithms

173

A graph is a pictorial representation of a set of objects where some pairs of objects are

connected by links. The interconnected objects are represented by points termed
as vertices, and the links that connect the vertices are called edges.

Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is the set of

edges, connecting the pairs of vertices. Take a look at the following graph −

In the above graph,

V = {a, b, c, d, e}

E = {ab, ac, bd, cd, de}

Graph Data Structure

Mathematical graphs can be represented in data structure. We can represent a graph using

an array of vertices and a two-dimensional array of edges. Before we proceed further, let's

familiarize ourselves with some important terms −

 Vertex − Each node of the graph is represented as a vertex. In the following

example, the labeled circle represents vertices. Thus, A to G are vertices. We can

represent them using an array as shown in the following image. Here A can be

identified by index 0. B can be identified using index 1 and so on.

27. Graphs

Data Structures & Algorithms

174

 Edge − Edge represents a path between two vertices or a line between two

vertices. In the following example, the lines from A to B, B to C, and so on

represents edges. We can use a two-dimensional array to represent an array as

shown in the following image. Here AB can be represented as 1 at row 0, column

1, BC as 1 at row 1, column 2 and so on, keeping other combinations as 0.

 Adjacency − Two node or vertices are adjacent if they are connected to each

other through an edge. In the following example, B is adjacent to A, C is adjacent

to B, and so on.

 Path − Path represents a sequence of edges between the two vertices. In the

following example, ABCD represents a path from A to D.

Data Structures & Algorithms

175

Basic Operations

Following are basic primary operations of a Graph which are following.

 Add Vertex − Adds a vertex to the graph.

 Add Edge − Adds an edge between the two vertices of the graph.

 Display Vertex − Displays a vertex of the graph.

To know more about Graph, please read Graph Theory Tutorial. We shall learn about
traversing a graph in the coming chapters.

http://www.tutorialspoint.com/graph_theory/index.htm

Data Structures & Algorithms

176

Depth First Search (DFS) algorithm traverses a graph in a depthward motion and uses a

stack to remember to get the next vertex to start a search, when a dead end occurs in

any iteration.

As in the example given above, DFS algorithm traverses from A to B to C to D first then
to E, then to F and lastly to G. It employs the following rules.

 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it

in a stack.

 Rule 2 − If no adjacent vertex is found, pop up a vertex from the stack. (It will

pop up all the vertices from the stack, which do not have adjacent vertices.)

 Rule 3 − Repeat Rule 1 and Rule 2 until the stack is empty.

28. Depth First Traversal

Data Structures & Algorithms

177

Steps Traversal Description

1.

Initialize the stack.

2.

Mark S as visited and put it

onto the stack. Explore any

unvisited adjacent node

from S. We have three nodes

and we can pick any of them.

For this example, we shall

take the node in an

alphabetical order.

3.

Mark A as visited and put it

onto the stack. Explore any

unvisited adjacent node from

A. Both S and D are adjacent

to A but we are concerned for

unvisited nodes only.

Data Structures & Algorithms

178

4.

Visit D and mark it as visited

and put onto the stack. Here,

we have B and C nodes, which

are adjacent to D and both

are unvisited. However, we

shall again choose in an

alphabetical order.

5.

We choose B, mark it as

visited and put onto the stack.

Here B does not have any

unvisited adjacent node. So,

we pop B from the stack.

6.

We check the stack top for

return to the previous node

and check if it has any

unvisited nodes. Here, we

find D to be on the top of the

stack.

7.

Only unvisited adjacent node

is from D is C now. So we

visit C, mark it as visited and

put it onto the stack.

Data Structures & Algorithms

179

As C does not have any unvisited adjacent node so we keep popping the stack until we

find a node that has an unvisited adjacent node. In this case, there's none and we keep

popping until the stack is empty.

To know about the implementation of this algorithm in C programming language, click

here.

Depth First Traversal in C

We shall not see the implementation of Depth First Traversal (or Depth First Search) in C

programming language. For our reference purpose, we shall follow our example and take

this as our graph model −

Implementation in C

#include <stdio.h>

#include <stdlib.h>

#include <stdbool.h>

#define MAX 5

struct Vertex {

 char label;

 bool visited;

};

http://www.tutorialspoint.com/data_structures_algorithms/depth_first_traversal_in_c.htm
http://www.tutorialspoint.com/data_structures_algorithms/depth_first_traversal_in_c.htm

Data Structures & Algorithms

180

//stack variables

int stack[MAX];

int top = -1;

//graph variables

//array of vertices

struct Vertex* lstVertices[MAX];

//adjacency matrix

int adjMatrix[MAX][MAX];

//vertex count

int vertexCount = 0;

//stack functions

void push(int item) {

 stack[++top] = item;

}

int pop() {

 return stack[top--];

}

int peek() {

 return stack[top];

}

bool isStackEmpty() {

 return top == -1;

}

Data Structures & Algorithms

181

//graph functions

//add vertex to the vertex list

void addVertex(char label) {

 struct Vertex* vertex = (struct Vertex*) malloc(sizeof(struct Vertex));

 vertex->label = label;

 vertex->visited = false;

 lstVertices[vertexCount++] = vertex;

}

//add edge to edge array

void addEdge(int start,int end) {

 adjMatrix[start][end] = 1;

 adjMatrix[end][start] = 1;

}

//display the vertex

void displayVertex(int vertexIndex) {

 printf("%c ",lstVertices[vertexIndex]->label);

}

//get the adjacent unvisited vertex

int getAdjUnvisitedVertex(int vertexIndex) {

 int i;

 for(i = 0; i<vertexCount; i++) {

 if(adjMatrix[vertexIndex][i] == 1 && lstVertices[i]->visited == false) {

 return i;

 }

 }

 return -1;

}

Data Structures & Algorithms

182

void depthFirstSearch() {

 int i;

 //mark first node as visited

 lstVertices[0]->visited = true;

 //display the vertex

 displayVertex(0);

 //push vertex index in stack

 push(0);

 while(!isStackEmpty()) {

 //get the unvisited vertex of vertex which is at top of the stack

 int unvisitedVertex = getAdjUnvisitedVertex(peek());

 //no adjacent vertex found

 if(unvisitedVertex == -1) {

 pop();

 }else {

 lstVertices[unvisitedVertex]->visited = true;

 displayVertex(unvisitedVertex);

 push(unvisitedVertex);

 }

 }

 //stack is empty, search is complete, reset the visited flag

 for(i = 0;i < vertexCount;i++) {

 lstVertices[i]->visited = false;

 }

}

Data Structures & Algorithms

183

int main() {

 int i, j;

 for(i = 0; i<MAX; i++) // set adjacency {

 for(j = 0; j<MAX; j++) // matrix to 0

 adjMatrix[i][j] = 0;

 }

 addVertex('S'); // 0

 addVertex('A'); // 1

 addVertex('B'); // 2

 addVertex('C'); // 3

 addVertex('D'); // 4

 addEdge(0, 1); // S - A

 addEdge(0, 2); // S - B

 addEdge(0, 3); // S - C

 addEdge(1, 4); // A - D

 addEdge(2, 4); // B - D

 addEdge(3, 4); // C - D

 printf("Depth First Search: ");

 depthFirstSearch();

 return 0;

}

If we compile and run the above program, it will produce the following result −

Depth First Search: S A D B C

Data Structures & Algorithms

184

Breadth First Search (BFS) algorithm traverses a graph in a breadthward motion and uses

a queue to remember to get the next vertex to start a search, when a dead end occurs in

any iteration.

As in the example given above, BFS algorithm traverses from A to B to E to F first then to

C and G lastly to D. It employs the following rules.

 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert

it in a queue.

 Rule 2 − If no adjacent vertex is found, remove the first vertex from the queue.

 Rule 3 − Repeat Rule 1 and Rule 2 until the queue is empty.

29. Breadth First Traversal

Data Structures & Algorithms

185

Steps Traversal Description

1.

Initialize the queue.

2.

We start from visiting S

(starting node), and mark it

as visited.

3.

We then see an unvisited

adjacent node from S. In this

example, we have three nodes

but alphabetically we

choose A, mark it as visited

and enqueue it.

4.

Next, the unvisited adjacent

node from S is B. We mark it

as visited and enqueue it.

Data Structures & Algorithms

186

5.

Next, the unvisited adjacent

node from S is C. We mark it

as visited and enqueue it.

6.

Now, S is left with no

unvisited adjacent nodes. So,

we dequeue and find A.

7.

From A we have D as

unvisited adjacent node. We

mark it as visited and

enqueue it.

At this stage, we are left with no unmarked (unvisited) nodes. But as per the algorithm

we keep on dequeuing in order to get all unvisited nodes. When the queue gets emptied,
the program is over.

The implementation of this algorithm in C programming language can be seen here.

Breadth First Traversal in C

We shall not see the implementation of Breadth First Traversal (or Breadth First Search)

in C programming language. For our reference purpose, we shall follow our example and

take this as our graph model −

http://www.tutorialspoint.com/data_structures_algorithms/breadth_first_traversal_in_c.htm

Data Structures & Algorithms

187

Implementation in C

#include <stdio.h>

#include <stdlib.h>

#include <stdbool.h>

#define MAX 5

struct Vertex {

 char label;

 bool visited;

};

//queue variables

int queue[MAX];

int rear = -1;

int front = 0;

int queueItemCount = 0;

//graph variables

Data Structures & Algorithms

188

//array of vertices

struct Vertex* lstVertices[MAX];

//adjacency matrix

int adjMatrix[MAX][MAX];

//vertex count

int vertexCount = 0;

//queue functions

void insert(int data) {

 queue[++rear] = data;

 queueItemCount++;

}

int removeData() {

 queueItemCount--;

 return queue[front++];

}

bool isQueueEmpty() {

 return queueItemCount == 0;

}

//graph functions

//add vertex to the vertex list

void addVertex(char label) {

 struct Vertex* vertex = (struct Vertex*) malloc(sizeof(struct Vertex));

 vertex->label = label;

 vertex->visited = false;

 lstVertices[vertexCount++] = vertex;

}

Data Structures & Algorithms

189

//add edge to edge array

void addEdge(int start,int end) {

 adjMatrix[start][end] = 1;

 adjMatrix[end][start] = 1;

}

//display the vertex

void displayVertex(int vertexIndex) {

 printf("%c ",lstVertices[vertexIndex]->label);

}

//get the adjacent unvisited vertex

int getAdjUnvisitedVertex(int vertexIndex) {

 int i;

 for(i = 0; i<vertexCount; i++) {

 if(adjMatrix[vertexIndex][i] == 1 && lstVertices[i]->visited == false)

 return i;

 }

 return -1;

}

void breadthFirstSearch() {

 int i;

 //mark first node as visited

 lstVertices[0]->visited = true;

 //display the vertex

 displayVertex(0);

Data Structures & Algorithms

190

 //insert vertex index in queue

 insert(0);

 int unvisitedVertex;

 while(!isQueueEmpty()) {

 //get the unvisited vertex of vertex which is at front of the queue

 int tempVertex = removeData();

 //no adjacent vertex found

 while((unvisitedVertex = getAdjUnvisitedVertex(tempVertex)) != -1) {

 lstVertices[unvisitedVertex]->visited = true;

 displayVertex(unvisitedVertex);

 insert(unvisitedVertex);

 }

 }

 //queue is empty, search is complete, reset the visited flag

 for(i = 0;i<vertexCount;i++) {

 lstVertices[i]->visited = false;

 }

}

int main() {

 int i, j;

 for(i = 0; i<MAX; i++) // set adjacency {

 for(j = 0; j<MAX; j++) // matrix to 0

 adjMatrix[i][j] = 0;

 }

 addVertex('S'); // 0

 addVertex('A'); // 1

 addVertex('B'); // 2

 addVertex('C'); // 3

 addVertex('D'); // 4

Data Structures & Algorithms

191

 addEdge(0, 1); // S - A

 addEdge(0, 2); // S - B

 addEdge(0, 3); // S - C

 addEdge(1, 4); // A - D

 addEdge(2, 4); // B - D

 addEdge(3, 4); // C - D

 printf("\nBreadth First Search: ");

 breadthFirstSearch();

 return 0;

}

If we compile and run the above program, it will produce the following result −

Breadth First Search: S A B C D

Data Structures & Algorithms

192

Tree Data Structure

Data Structures & Algorithms

193

Tree represents the nodes connected by edges. We will discuss binary tree or binary search
tree specifically.

Binary Tree is a special datastructure used for data storage purposes. A binary tree has a

special condition that each node can have a maximum of two children. A binary tree has

the benefits of both an ordered array and a linked list as search is as quick as in a sorted
array and insertion or deletion operation are as fast as in linked list.

Important Terms

Following are the important terms with respect to tree.

 Path − Path refers to the sequence of nodes along the edges of a tree.

 Root – The node at the top of the tree is called root. There is only one root per

tree and one path from the root node to any node.

 Parent − Any node except the root node has one edge upward to a node called

parent.

 Child – The node below a given node connected by its edge downward is called its

child node.

 Leaf – The node which does not have any child node is called the leaf node.

 Subtree − Subtree represents the descendants of a node.

30. Tree

Data Structures & Algorithms

194

 Visiting − Visiting refers to checking the value of a node when control is on the

node.

 Traversing − Traversing means passing through nodes in a specific order.

 Levels − Level of a node represents the generation of a node. If the root node is

at level 0, then its next child node is at level 1, its grandchild is at level 2, and so

on.

 Keys − Key represents a value of a node based on which a search operation is to

be carried out for a node.

Binary Search Tree Representation

Binary Search tree exhibits a special behavior. A node's left child must have a value less

than its parent's value and the node's right child must have a value greater than its parent
value.

We're going to implement tree using node object and connecting them through references.

Tree Node

The code to write a tree node would be similar to what is given below. It has a data part
and references to its left and right child nodes.

struct node {

 int data;

 struct node *leftChild;

 struct node *rightChild;

};

Data Structures & Algorithms

195

In a tree, all nodes share common construct.

BST Basic Operations

The basic operations that can be performed on a binary search tree data structure, are

the following −

 Insert − Inserts an element in a tree/create a tree.

 Search − Searches an element in a tree.

 Pre-order Traversal − Traverses a tree in a pre-order manner.

 In-order Traversal − Traverses a tree in an in-order manner.

 Post-order Traversal − Traverses a tree in a post-order manner.

We shall learn creating (inserting into) a tree structure and searching a data item in a tree
in this chapter. We shall learn about tree traversing methods in the coming chapter.

Insert Operation

The very first insertion creates the tree. Afterwards, whenever an element is to be

inserted, first locate its proper location. Start searching from the root node, then if the

data is less than the key value, search for the empty location in the left subtree and insert
the data. Otherwise, search for the empty location in the right subtree and insert the data.

Algorithm

If root is NULL

 then create root node

return

If root exists then

 compare the data with node.data

 while until insertion position is located

 If data is greater than node.data

 goto right subtree

 else

 goto left subtree

 endwhile

Data Structures & Algorithms

196

 insert data

end If

Implementation

The implementation of insert function should look like this −

void insert(int data) {

 struct node *tempNode = (struct node*) malloc(sizeof(struct node));

 struct node *current;

 struct node *parent;

 tempNode->data = data;

 tempNode->leftChild = NULL;

 tempNode->rightChild = NULL;

 //if tree is empty, create root node

 if(root == NULL) {

 root = tempNode;

 }else {

 current = root;

 parent = NULL;

 while(1) {

 parent = current;

 //go to left of the tree

 if(data < parent->data) {

 current = current->leftChild;

 //insert to the left

 if(current == NULL) {

 parent->leftChild = tempNode;

 return;

 }

 }

Data Structures & Algorithms

197

 //go to right of the tree

 else {

 current = current->rightChild;

 //insert to the right

 if(current == NULL) {

 parent->rightChild = tempNode;

 return;

 }

 }

 }

 }

}

Search Operation

Whenever an element is to be searched, start searching from the root node, then if the

data is less than the key value, search for the element in the left subtree. Otherwise,
search for the element in the right subtree. Follow the same algorithm for each node.

Algorithm

If root.data is equal to search.data

 return root

else

 while data not found

 If data is greater than node.data

 goto right subtree

 else

 goto left subtree

 If data found

 return node

 endwhile

 return data not found

Data Structures & Algorithms

198

end if

The implementation of this algorithm should look like this.

struct node* search(int data) {

 struct node *current = root;

 printf("Visiting elements: ");

 while(current->data != data) {

 if(current != NULL)

 printf("%d ",current->data);

 //go to left tree

 if(current->data > data) {

 current = current->leftChild;

 }

 //else go to right tree

 else {

 current = current->rightChild;

 }

 //not found

 if(current == NULL) {

 return NULL;

 }

 return current;

 }

}

To know about the implementation of binary search tree data structure, please click here.

Tree Traversal in C

Traversal is a process to visit all the nodes of a tree and may print their values too.

Because, all nodes are connected via edges (links) we always start from the root (head)

node. That is, we cannot random access a node in a tree. There are three ways which we
use to traverse a tree −

http://www.tutorialspoint.com/data_structures_algorithms/tree_traversal_in_c.htm

Data Structures & Algorithms

199

 In-order Traversal

 Pre-order Traversal

 Post-order Traversal

We shall now look at the implementation of tree traversal in C programming language here

using the following binary tree −

Implementation in C

#include <stdio.h>

#include <stdlib.h>

struct node {

 int data;

 struct node *leftChild;

 struct node *rightChild;

};

struct node *root = NULL;

void insert(int data) {

 struct node *tempNode = (struct node*) malloc(sizeof(struct node));

 struct node *current;

 struct node *parent;

Data Structures & Algorithms

200

 tempNode->data = data;

 tempNode->leftChild = NULL;

 tempNode->rightChild = NULL;

 //if tree is empty

 if(root == NULL) {

 root = tempNode;

 }else {

 current = root;

 parent = NULL;

 while(1) {

 parent = current;

 //go to left of the tree

 if(data < parent->data) {

 current = current->leftChild;

 //insert to the left

 if(current == NULL) {

 parent->leftChild = tempNode;

 return;

 }

 }//go to right of the tree

 else {

 current = current->rightChild;

 //insert to the right

 if(current == NULL) {

 parent->rightChild = tempNode;

 return;

 }

 }

 }

 }

}

struct node* search(int data) {

Data Structures & Algorithms

201

 struct node *current = root;

 printf("Visiting elements: ");

 while(current->data != data) {

 if(current != NULL)

 printf("%d ",current->data);

 //go to left tree

 if(current->data > data) {

 current = current->leftChild;

 }

 //else go to right tree

 else {

 current = current->rightChild;

 }

 //not found

 if(current == NULL) {

 return NULL;

 }

 }

 return current;

}

void pre_order_traversal(struct node* root) {

 if(root != NULL) {

 printf("%d ",root->data);

 pre_order_traversal(root->leftChild);

 pre_order_traversal(root->rightChild);

 }

}

void inorder_traversal(struct node* root) {

 if(root != NULL) {

Data Structures & Algorithms

202

 inorder_traversal(root->leftChild);

 printf("%d ",root->data);

 inorder_traversal(root->rightChild);

 }

}

void post_order_traversal(struct node* root) {

 if(root != NULL) {

 post_order_traversal(root->leftChild);

 post_order_traversal(root->rightChild);

 printf("%d ", root->data);

 }

}

int main() {

 int i;

 int array[7] = { 27, 14, 35, 10, 19, 31, 42 };

 for(i = 0; i < 7; i++)

 insert(array[i]);

 i = 31;

 struct node * temp = search(i);

 if(temp != NULL) {

 printf("[%d] Element found.", temp->data);

 printf("\n");

 }else {

 printf("[x] Element not found (%d).\n", i);

 }

 i = 15;

 temp = search(i);

 if(temp != NULL) {

 printf("[%d] Element found.", temp->data);

 printf("\n");

Data Structures & Algorithms

203

 }else {

 printf("[x] Element not found (%d).\n", i);

 }

 printf("\nPreorder traversal: ");

 pre_order_traversal(root);

 printf("\nInorder traversal: ");

 inorder_traversal(root);

 printf("\nPost order traversal: ");

 post_order_traversal(root);

 return 0;

}

If we compile and run the above program, it will produce the following result −

Visiting elements: 27 -> 35 -> [31] Element found.

Visiting elements: 27 -> 14 -> 19 -> [x] Element not found (15).

Preorder traversal: 27 14 10 19 35 31 42

Inorder traversal: 10 14 19 27 31 35 42

Post order traversal: 10 19 14 31 42 35 27

Data Structures & Algorithms

204

Traversal is a process to visit all the nodes of a tree and may print their values too.

Because, all nodes are connected via edges (links) we always start from the root (head)

node. That is, we cannot randomly access a node in a tree. There are three ways which
we use to traverse a tree −

 In-order Traversal

 Pre-order Traversal

 Post-order Traversal

Generally, we traverse a tree to search or locate a given item or key in the tree or to print
all the values it contains.

In-order Traversal

In this traversal method, the left subtree is visited first, then the root and later the right
sub-tree. We should always remember that every node may represent a subtree itself.

If a binary tree is traversed in-order, the output will produce sorted key values in an

ascending order.

31. Tree Traversal

Data Structures & Algorithms

205

We start from A, and following in-order traversal, we move to its left subtree B. B is also

traversed in-order. The process goes on until all the nodes are visited. The output of in-

order traversal of this tree will be −

D → B → E → A → F → C → G

Algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Visit root node.

Step 3 − Recursively traverse right subtree.

Pre-order Traversal

In this traversal method, the root node is visited first, then the left subtree and finally the
right subtree.

We start from A, and following pre-order traversal, we first visit A itself and then move to

its left subtree B. B is also traversed pre-order. The process goes on until all the nodes

are visited. The output of pre-order traversal of this tree will be −

A → B → D → E → C → F → G

Data Structures & Algorithms

206

Algorithm

Until all nodes are traversed −

Step 1 − Visit root node.

Step 2 − Recursively traverse left subtree.

Step 3 − Recursively traverse right subtree.

Post-order Traversal

In this traversal method, the root node is visited last, hence the name. First we traverse
the left subtree, then the right subtree and finally the root node.

We start from A, and following pre-order traversal, we first visit the left subtree B. B is

also traversed post-order. The process goes on until all the nodes are visited. The output
of post-order traversal of this tree will be −

D → E → B → F → G → C → A

Data Structures & Algorithms

207

Algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Recursively traverse right subtree.

Step 3 − Visit root node.

To check the C implementation of tree traversing, please click here

Tree Traversal in C

Traversal is a process to visit all the nodes of a tree and may print their values too.

Because, all nodes are connected via edges (links) we always start from the root (head)

node. That is, we cannot randomly access a node in a tree. There are three ways which

we use to traverse a tree −

 In-order Traversal

 Pre-order Traversal

 Post-order Traversal

We shall now see the implementation of tree traversal in C programming language here
using the following binary tree −

http://www.tutorialspoint.com/data_structures_algorithms/tree_traversal_in_c.htm

Data Structures & Algorithms

208

Implementation in C

#include <stdio.h>

#include <stdlib.h>

struct node {

 int data;

 struct node *leftChild;

 struct node *rightChild;

};

struct node *root = NULL;

void insert(int data) {

 struct node *tempNode = (struct node*) malloc(sizeof(struct node));

 struct node *current;

 struct node *parent;

 tempNode->data = data;

 tempNode->leftChild = NULL;

 tempNode->rightChild = NULL;

 //if tree is empty

 if(root == NULL) {

 root = tempNode;

 }else {

 current = root;

 parent = NULL;

 while(1) {

 parent = current;

 //go to left of the tree

 if(data < parent->data) {

 current = current->leftChild;

 //insert to the left

Data Structures & Algorithms

209

 if(current == NULL) {

 parent->leftChild = tempNode;

 return;

 }

 }//go to right of the tree

 else {

 current = current->rightChild;

 //insert to the right

 if(current == NULL) {

 parent->rightChild = tempNode;

 return;

 }

 }

 }

 }

}

struct node* search(int data) {

 struct node *current = root;

 printf("Visiting elements: ");

 while(current->data != data) {

 if(current != NULL)

 printf("%d ",current->data);

 //go to left tree

 if(current->data > data) {

 current = current->leftChild;

 }

 //else go to right tree

 else {

 current = current->rightChild;

 }

 //not found

 if(current == NULL) {

Data Structures & Algorithms

210

 return NULL;

 }

 }

 return current;

}

void pre_order_traversal(struct node* root) {

 if(root != NULL) {

 printf("%d ",root->data);

 pre_order_traversal(root->leftChild);

 pre_order_traversal(root->rightChild);

 }

}

void inorder_traversal(struct node* root) {

 if(root != NULL) {

 inorder_traversal(root->leftChild);

 printf("%d ",root->data);

 inorder_traversal(root->rightChild);

 }

}

void post_order_traversal(struct node* root) {

 if(root != NULL) {

 post_order_traversal(root->leftChild);

 post_order_traversal(root->rightChild);

 printf("%d ", root->data);

 }

}

int main() {

 int i;

Data Structures & Algorithms

211

 int array[7] = { 27, 14, 35, 10, 19, 31, 42 };

 for(i = 0; i < 7; i++)

 insert(array[i]);

 i = 31;

 struct node * temp = search(i);

 if(temp != NULL) {

 printf("[%d] Element found.", temp->data);

 printf("\n");

 }else {

 printf("[x] Element not found (%d).\n", i);

 }

 i = 15;

 temp = search(i);

 if(temp != NULL) {

 printf("[%d] Element found.", temp->data);

 printf("\n");

 }else {

 printf("[x] Element not found (%d).\n", i);

 }

 printf("\nPreorder traversal: ");

 pre_order_traversal(root);

 printf("\nInorder traversal: ");

 inorder_traversal(root);

 printf("\nPost order traversal: ");

 post_order_traversal(root);

 return 0;

}

Data Structures & Algorithms

212

If we compile and run the above program, it will produce the following result −

Visiting elements: 27 -> 35 -> [31] Element found.

Visiting elements: 27 -> 14 -> 19 -> [x] Element not found (15).

Preorder traversal: 27 14 10 19 35 31 42

Inorder traversal: 10 14 19 27 31 35 42

Post order traversal: 10 19 14 31 42 35 27

Data Structures & Algorithms

213

A Binary Search Tree (BST) is a tree in which all the nodes follow the below-mentioned
properties −

 The left sub-tree of a node has a key less than or equal to its parent node's key.

 The right sub-tree of a node has a key greater than or equal to its parent node's

key.

Thus, BST divides all its sub-trees into two segments; the left sub-tree and the right sub-
tree and can be defined as −

left_subtree (keys) ≤ node (key) ≤ right_subtree (keys)

Representation

BST is a collection of nodes arranged in a way where they maintain BST properties. Each

node has a key and an associated value. While searching, the desired key is compared to
the keys in BST and if found, the associated value is retrieved.

Following is a pictorial representation of BST −

We observe that the root node key (27) has all less-valued keys on the left sub-tree and
the higher valued keys on the right sub-tree.

32. Binary Search Tree

Data Structures & Algorithms

214

Basic Operations

Following are the basic operations of a tree -

 Search − Searches an element in a tree.

 Insert − Inserts an element in a tree.

 Pre-order Traversal − Traverses a tree in a pre-order manner.

 In-order Traversal − Traverses a tree in an in-order manner.

 Post-order Traversal − Traverses a tree in a post-order manner.

Node

Define a node having some data, references to its left and right child nodes.

struct node {

 int data;

 struct node *leftChild;

 struct node *rightChild;

};

Search Operation

Whenever an element is to be searched, start searching from the root node. Then if the

data is less than the key value, search for the element in the left subtree. Otherwise,
search for the element in the right subtree. Follow the same algorithm for each node.

struct node* search(int data){

 struct node *current = root;

 printf("Visiting elements: ");

 while(current->data != data){

 if(current != NULL) {

 printf("%d ",current->data);

 //go to left tree

 if(current->data > data){

 current = current->leftChild;

Data Structures & Algorithms

215

 }//else go to right tree

 else {

 current = current->rightChild;

 }

 //not found

 if(current == NULL){

 return NULL;

 }

 }

 }

 return current;

}

Insert Operation

Whenever an element is to be inserted, first locate its proper location. Start searching

from the root node, then if the data is less than the key value, search for the empty

location in the left subtree and insert the data. Otherwise, search for the empty location

in the right subtree and insert the data.

void insert(int data){

 struct node *tempNode = (struct node*) malloc(sizeof(struct node));

 struct node *current;

 struct node *parent;

 tempNode->data = data;

 tempNode->leftChild = NULL;

 tempNode->rightChild = NULL;

 //if tree is empty

 if(root == NULL){

 root = tempNode;

 }else {

 current = root;

 parent = NULL;

 while(1){

 parent = current;

Data Structures & Algorithms

216

 //go to left of the tree

 if(data < parent->data){

 current = current->leftChild;

 //insert to the left

 if(current == NULL){

 parent->leftChild = tempNode;

 return;

 }

 }//go to right of the tree

 else{

 current = current->rightChild;

 //insert to the right

 if(current == NULL){

 parent->rightChild = tempNode;

 return;

 }

 }

 }

 }

}

Data Structures & Algorithms

217

What if the input to binary search tree comes in a sorted (ascending or descending)
manner? It will then look like this −

It is observed that BST's worst-case performance is closest to linear search algorithms,

that is Ο(n). In real-time data, we cannot predict data pattern and their frequencies. So,
a need arises to balance out the existing BST.

Named after their inventor Adelson, Velski & Landis, AVL trees are height balancing

binary search tree. AVL tree checks the height of the left and the right sub-trees and

assures that the difference is not more than 1. This difference is called the Balance
Factor.

Here we see that the first tree is balanced and the next two trees are not balanced −

33. AVL Trees

Data Structures & Algorithms

218

In the second tree, the left subtree of C has height 2 and the right subtree has height 0,

so the difference is 2. In the third tree, the right subtree of A has height 2 and the left is

missing, so it is 0, and the difference is 2 again. AVL tree permits difference (balance
factor) to be only 1.

BalanceFactor = height(left-sutree) − height(right-sutree)

If the difference in the height of left and right sub-trees is more than 1, the tree is balanced
using some rotation techniques.

AVL Rotations

To balance itself, an AVL tree may perform the following four kinds of rotations −

 Left rotation

 Right rotation

 Left-Right rotation

 Right-Left rotation

The first two rotations are single rotations and the next two rotations are double rotations.

To have an unbalanced tree, we at least need a tree of height 2. With this simple tree,
let's understand them one by one.

Left Rotation

If a tree becomes unbalanced, when a node is inserted into the right subtree of the right
subtree, then we perform a single left rotation −

In our example, node A has become unbalanced as a node is inserted in the right subtree
of A's right subtree. We perform the left rotation by making A the left-subtree of B.

Data Structures & Algorithms

219

Right Rotation

AVL tree may become unbalanced, if a node is inserted in the left subtree of the left
subtree. The tree then needs a right rotation.

As depicted, the unbalanced node becomes the right child of its left child by performing a

right rotation.

Left-Right Rotation

Double rotations are slightly complex version of already explained versions of rotations.

To understand them better, we should take note of each action performed while rotation.

Let's first check how to perform Left-Right rotation. A left-right rotation is a combination
of left rotation followed by right rotation.

State Action

A node has been inserted into the right subtree of the left

subtree. This makes C an unbalanced node. These scenarios

cause AVL tree to perform left-right rotation.

We first perform the left rotation on the left subtree of C.

This makes A, the left subtree of B.

Data Structures & Algorithms

220

Node C is still unbalanced, however now, it is because of the

left-subtree of the left-subtree.

We shall now right-rotate the tree, making B the new root

node of this subtree. C now becomes the right subtree of its

own left subtree.

The tree is now balanced.

Right-Left Rotation

The second type of double rotation is Right-Left Rotation. It is a combination of right
rotation followed by left rotation.

State Action

A node has been inserted into the left subtree of the right

subtree. This makes A, an unbalanced node with balance

factor 2.

Data Structures & Algorithms

221

First, we perform the right rotation along C node, making C

the right subtree of its own left subtree B. Now, B becomes

the right subtree of A.

Node A is still unbalanced because of the right subtree of its

right subtree and requires a left rotation.

A left rotation is performed by making B the new root node

of the subtree. A becomes the left subtree of its right

subtree B.

The tree is now balanced.

Data Structures & Algorithms

222

A spanning tree is a subset of Graph G, which has all the vertices covered with minimum

possible number of edges. Hence, a spanning tree does not have cycles and it cannot be

disconnected.

By this definition, we can draw a conclusion that every connected and undirected Graph G

has at least one spanning tree. A disconnected graph does not have any spanning tree, as
it cannot be spanned to all its vertices.

We found three spanning trees off one complete graph. A complete undirected graph can

have maximum nn-2 number of spanning trees, where n is the number of nodes. In the
above addressed example, n is 3, hence 33−2 = 3 spanning trees are possible.

General Properties of Spanning Tree

We now understand that one graph can have more than one spanning tree. Following are
a few properties of the spanning tree connected to graph G -

 A connected graph G can have more than one spanning tree.

 All possible spanning trees of graph G, have the same number of edges and

vertices.

 The spanning tree does not have any cycle (loops).

34. Spanning Tree

Data Structures & Algorithms

223

 Removing one edge from the spanning tree will make the graph disconnected, i.e.

the spanning tree is minimally connected.

 Adding one edge to the spanning tree will create a circuit or loop, i.e. the spanning

tree is maximally acyclic.

Mathematical Properties of Spanning Tree

 Spanning tree has n-1 edges, where n is the number of nodes (vertices).

 From a complete graph, by removing maximum e-n+1 edges, we can construct a

spanning tree.

 A complete graph can have maximum nn-2 number of spanning trees.

Thus, we can conclude that spanning trees are a subset of connected Graph G and
disconnected graphs do not have spanning tree.

Application of Spanning Tree

Spanning tree is basically used to find a minimum path to connect all nodes in a graph.
Common application of spanning trees are −

 Civil Network Planning

 Computer Network Routing Protocol

 Cluster Analysis

Let us understand this through a small example. Consider, city network as a huge graph

and now plans to deploy telephone lines in such a way that in minimum lines we can
connect to all city nodes. This is where the spanning tree comes into picture.

Minimum Spanning Tree (MST)

In a weighted graph, a minimum spanning tree is a spanning tree that has minimum

weight than all other spanning trees of the same graph. In real-world situations, this

weight can be measured as distance, congestion, traffic load or any arbitrary value
denoted to the edges.

Minimum Spanning-Tree Algorithm

We shall learn about two most important spanning tree algorithms here −

 Kruskal's Algorithm

 Prim's Algorithm

Both are greedy algorithms.

http://www.tutorialspoint.com/data_structures_algorithms/kruskals_spanning_tree_algorithm.htm
http://www.tutorialspoint.com/data_structures_algorithms/prims_spanning_tree_algorithm.htm

Data Structures & Algorithms

224

Kruskal's Spanning Tree Algorithm

Kruskal's algorithm to find the minimum cost spanning tree uses the greedy approach.

This algorithm treats the graph as a forest and every node it has as an individual tree. A

tree connects to another only and only if, it has the least cost among all available options
and does not violate MST properties.

To understand Kruskal's algorithm let us consider the following example −

Step 1 - Remove all loops and parallel edges

Remove all loops and parallel edges from the given graph.

Data Structures & Algorithms

225

In case of parallel edges, keep the one which has the least cost associated and remove all
others.

Step 2 - Arrange all edges in their increasing order of weight

The next step is to create a set of edges and weight, and arrange them in an ascending

order of weightage (cost).

Step 3 - Add the edge which has the least weightage

Now we start adding edges to the graph beginning from the one which has the least weight.

Throughout, we shall keep checking that the spanning properties remain intact. In case,

by adding one edge, the spanning tree property does not hold then we shall consider not
to include the edge in the graph.

Data Structures & Algorithms

226

The least cost is 2 and edges involved are B,D and D,T. We add them. Adding them does
not violate spanning tree properties, so we continue to our next edge selection.

Next cost is 3, and associated edges are A,C and C,D. We add them again −

Next cost in the table is 4, and we observe that adding it will create a circuit in the graph.

We ignore it. In the process we shall ignore/avoid all edges that create a circuit.

Data Structures & Algorithms

227

We observe that edges with cost 5 and 6 also create circuits. We ignore them and move
on.

Now we are left with only one node to be added. Between the two least cost edges available
7 and 8, we shall add the edge with cost 7.

By adding edge S,A we have included all the nodes of the graph and we now have minimum
cost spanning tree.

Prim's Spanning Tree Algorithm

Prim's algorithm to find minimum cost spanning tree (as Kruskal's algorithm) uses the

greedy approach. Prim's algorithm shares a similarity with the shortest path

first algorithms.

Prim's algorithm, in contrast with Kruskal's algorithm, treats the nodes as a single tree
and keeps on adding new nodes to the spanning tree from the given graph.

Data Structures & Algorithms

228

To contrast with Kruskal's algorithm and to understand Prim's algorithm better, we shall
use the same example −

Step 1 - Remove all loops and parallel edges

Data Structures & Algorithms

229

Remove all loops and parallel edges from the given graph. In case of parallel edges, keep
the one which has the least cost associated and remove all others.

Step 2 - Choose any arbitrary node as root node

In this case, we choose S node as the root node of Prim's spanning tree. This node is

arbitrarily chosen, so any node can be the root node. One may wonder why any video can

be a root node. So the answer is, in the spanning tree all the nodes of a graph are included

and because it is connected then there must be at least one edge, which will join it to the
rest of the tree.

Step 3 - Check outgoing edges and select the one with less cost

After choosing the root node S, we see that S,A and S,C are two edges with weight 7 and
8, respectively. We choose the edge S,A as it is lesser than the other.

Data Structures & Algorithms

230

Now, the tree S-7-A is treated as one node and we check for all edges going out from it.
We select the one which has the lowest cost and include it in the tree.

After this step, S-7-A-3-C tree is formed. Now we'll again treat it as a node and will check

all the edges again. However, we will choose only the least cost edge. In this case, C-3-D
is the new edge, which is less than other edges' cost 8, 6, 4, etc.

After adding node D to the spanning tree, we now have two edges going out of it having

the same cost, i.e. D-2-T and D-2-B. Thus, we can add either one. But the next step will

again yield edge 2 as the least cost. Hence, we are showing a spanning tree with both
edges included.

We may find that the output spanning tree of the same graph using two different
algorithms is same.

Data Structures & Algorithms

231

Heap is a special case of balanced binary tree data structure where the root-node key is
compared with its children and arranged accordingly. If α has child node β then −

key(α) ≥ key(β)

As the value of parent is greater than that of child, this property generates Max Heap.
Based on this criteria, a heap can be of two types −

For Input → 35 33 42 10 14 19 27 44 26 31

Min-Heap − Where the value of the root node is less than or equal to either of its children.

Max-Heap − Where the value of the root node is greater than or equal to either of its

children.

35. Heaps

Data Structures & Algorithms

232

Both trees are constructed using the same input and order of arrival.

Max Heap Construction Algorithm

We shall use the same example to demonstrate how a Max Heap is created. The procedure

to create Min Heap is similar but we go for min values instead of max values.

We are going to derive an algorithm for max heap by inserting one element at a time. At

any point of time, heap must maintain its property. While insertion, we also assume that
we are inserting a node in an already heapified tree.

Step 1 − Create a new node at the end of heap.

Step 2 − Assign new value to the node.

Step 3 − Compare the value of this child node with its parent.

Step 4 − If value of parent is less than child, then swap them.

Step 5 − Repeat step 3 & 4 until Heap property holds.

Note − In Min Heap construction algorithm, we expect the value of the parent node to be
less than that of the child node.

Let's understand Max Heap construction by an animated illustration. We consider the same

input sample that we used earlier.

Data Structures & Algorithms

233

Max Heap Deletion Algorithm

Let us derive an algorithm to delete from max heap. Deletion in Max (or Min) Heap always
happens at the root to remove the Maximum (or minimum) value.

Step 1 − Remove root node.

Step 2 − Move the last element of last level to root.

Step 3 − Compare the value of this child node with its parent.

Step 4 − If value of parent is less than child, then swap them.

Step 5 − Repeat step 3 & 4 until Heap property holds.

Data Structures & Algorithms

234

Recursion

Data Structures & Algorithms

235

Some computer programming languages allow a module or function to call itself. This

technique is known as recursion. In recursion, a function α either calls itself directly or

calls a function β that in turn calls the original function α. The function α is called recursive
function.

Example − a function calling itself.

int function(int value) {

 if(value < 1)

 return;

 function(value - 1);

 printf("%d ",value);

}

Example − a function that calls another function which in turn calls it again.

int function(int value) {

 if(value < 1)

 return;

 function(value - 1);

 printf("%d ",value);

}

Properties

A recursive function can go infinite like a loop. To avoid infinite running of recursive

function, there are two properties that a recursive function must have −

 Base criteria − There must be at least one base criteria or condition, such that,

when this condition is met the function stops calling itself recursively.

 Progressive approach − The recursive calls should progress in such a way that

each time a recursive call is made it comes closer to the base criteria.

36. Recursion ─ Basics

Data Structures & Algorithms

236

Implementation

Many programming languages implement recursion by means of stacks. Generally,

whenever a function (caller) calls another function (callee) or itself as callee, the caller

function transfers execution control to the callee. This transfer process may also involve
some data to be passed from the caller to the callee.

This implies, the caller function has to suspend its execution temporarily and resume later

when the execution control returns from the callee function. Here, the caller function needs

to start exactly from the point of execution where it puts itself on hold. It also needs the

exact same data values it was working on. For this purpose, an activation record (or stack
frame) is created for the caller function.

This activation record keeps the information about local variables, formal parameters,

return address and all information passed to the caller function.

Analysis of Recursion

One may argue why to use recursion, as the same task can be done with iteration. The

first reason is, recursion makes a program more readable and because of latest enhanced
CPU systems, recursion is more efficient than iterations.

Time Complexity

In case of iterations, we take number of iterations to count the time complexity. Likewise,

in case of recursion, assuming everything is constant, we try to figure out the number of

times a recursive call is being made. A call made to a function is Ο(1), hence the (n)
number of times a recursive call is made makes the recursive function Ο(n).

Data Structures & Algorithms

237

Space Complexity

Space complexity is counted as what amount of extra space is required for a module to

execute. In case of iterations, the compiler hardly requires any extra space. The compiler

keeps updating the values of variables used in the iterations. But in case of recursion, the

system needs to store activation record each time a recursive call is made. Hence, it is

considered that space complexity of recursive function may go higher than that of a
function with iteration.

Data Structures & Algorithms

238

Tower of Hanoi, is a mathematical puzzle which consists of three towers (pegs) and more
than one rings is as depicted −

These rings are of different sizes and stacked upon in an ascending order, i.e. the smaller

one sits over the larger one. There are other variations of the puzzle where the number of
disks increase, but the tower count remains the same.

Rules

The mission is to move all the disks to some another tower without violating the sequence
of arrangement. A few rules to be followed for Tower of Hanoi are −

 Only one disk can be moved among the towers at any given time.

 Only the "top" disk can be removed.

 No large disk can sit over a small disk.

37. Tower of Hanoi

Data Structures & Algorithms

239

Following is an animated representation of solving a Tower of Hanoi puzzle with three
disks.

Data Structures & Algorithms

240

Data Structures & Algorithms

241

Tower of Hanoi puzzle with n disks can be solved in minimum 2n−1 steps. This

presentation shows that a puzzle with 3 disks has taken 23−1 = 7 steps.

Data Structures & Algorithms

242

Algorithm

To write an algorithm for Tower of Hanoi, first we need to learn how to solve this problem
with lesser amount of disks, say → 1 or 2. We mark three towers with

name, source, destination and aux (only to help moving the disks). If we have only one
disk, then it can easily be moved from source to destination peg.

If we have 2 disks –

 First, we move the smaller (top) disk to aux peg.

 Then, we move the larger (bottom) disk to destination peg.

 And finally, we move the smaller disk from aux to destination peg.

Data Structures & Algorithms

243

Data Structures & Algorithms

244

So now, we are in a position to design an algorithm for Tower of Hanoi with more than

two disks. We divide the stack of disks in two parts. The largest disk (nth disk) is in one

part and all other (n-1) disks are in the second part.

Our ultimate aim is to move disk n from source to destination and then put all other (n-

1) disks onto it. We can imagine to apply the same in a recursive way for all given set of
disks.

The steps to follow are −

Step 1 − Move n-1 disks from source to aux

Step 2 − Move nth disk from source to dest

Step 3 − Move n-1 disks from aux to dest

A recursive algorithm for Tower of Hanoi can be driven as follows −

START

Procedure Hanoi(disk, source, dest, aux)

 IF disk == 0, THEN

 move disk from source to dest

 ELSE

 Hanoi(disk - 1, source, aux, dest) // Step 1

 move disk from source to dest // Step 2

 Hanoi(disk - 1, aux, dest, source) // Step 3

 END IF

END Procedure

STOP

To check the implementation in C programming, click here.

http://www.tutorialspoint.com/data_structures_algorithms/tower_of_hanoi_in_c.htm

Data Structures & Algorithms

245

Tower of Hanoi in C

Program

#include <stdio.h>

#include <stdbool.h>

#define MAX 10

int list[MAX] = {1,8,4,6,0,3,5,2,7,9};

void display(){

 int i;

 printf("[");

 // navigate through all items

 for(i = 0; i < MAX; i++){

 printf("%d ",list[i]);

 }

 printf("]\n");

}

void bubbleSort() {

 int temp;

 int i,j;

 bool swapped = false;

 // loop through all numbers

 for(i = 0; i < MAX-1; i++) {

 swapped = false;

 // loop through numbers falling ahead

 for(j = 0; j < MAX-1-i; j++) {

 printf("Items compared: [%d, %d] ", list[j],list[j+1]);

Data Structures & Algorithms

246

 // check if next number is lesser than current no

 // swap the numbers.

 // (Bubble up the highest number)

 if(list[j] > list[j+1]) {

 temp = list[j];

 list[j] = list[j+1];

 list[j+1] = temp;

 swapped = true;

 printf(" => swapped [%d, %d]\n",list[j],list[j+1]);

 }else {

 printf(" => not swapped\n");

 }

 }

 // if no number was swapped that means

 // array is sorted now, break the loop.

 if(!swapped) {

 break;

 }

 printf("Iteration %d#: ",(i+1));

 display();

 }

}

main(){

 printf("Input Array: ");

 display();

 printf("\n");

 bubbleSort();

 printf("\nOutput Array: ");

 display();

}

Data Structures & Algorithms

247

If we compile and run the above program, it will produce the following result −

Input Array: [1 8 4 6 0 3 5 2 7 9]

 Items compared: [1, 8] => not swapped

 Items compared: [8, 4] => swapped [4, 8]

 Items compared: [8, 6] => swapped [6, 8]

 Items compared: [8, 0] => swapped [0, 8]

 Items compared: [8, 3] => swapped [3, 8]

 Items compared: [8, 5] => swapped [5, 8]

 Items compared: [8, 2] => swapped [2, 8]

 Items compared: [8, 7] => swapped [7, 8]

 Items compared: [8, 9] => not swapped

Iteration 1#: [1 4 6 0 3 5 2 7 8 9]

 Items compared: [1, 4] => not swapped

 Items compared: [4, 6] => not swapped

 Items compared: [6, 0] => swapped [0, 6]

 Items compared: [6, 3] => swapped [3, 6]

 Items compared: [6, 5] => swapped [5, 6]

 Items compared: [6, 2] => swapped [2, 6]

 Items compared: [6, 7] => not swapped

 Items compared: [7, 8] => not swapped

Iteration 2#: [1 4 0 3 5 2 6 7 8 9]

 Items compared: [1, 4] => not swapped

 Items compared: [4, 0] => swapped [0, 4]

 Items compared: [4, 3] => swapped [3, 4]

 Items compared: [4, 5] => not swapped

 Items compared: [5, 2] => swapped [2, 5]

 Items compared: [5, 6] => not swapped

 Items compared: [6, 7] => not swapped

Iteration 3#: [1 0 3 4 2 5 6 7 8 9]

 Items compared: [1, 0] => swapped [0, 1]

 Items compared: [1, 3] => not swapped

 Items compared: [3, 4] => not swapped

 Items compared: [4, 2] => swapped [2, 4]

 Items compared: [4, 5] => not swapped

 Items compared: [5, 6] => not swapped

Data Structures & Algorithms

248

Iteration 4#: [0 1 3 2 4 5 6 7 8 9]

 Items compared: [0, 1] => not swapped

 Items compared: [1, 3] => not swapped

 Items compared: [3, 2] => swapped [2, 3]

 Items compared: [3, 4] => not swapped

 Items compared: [4, 5] => not swapped

Iteration 5#: [0 1 2 3 4 5 6 7 8 9]

 Items compared: [0, 1] => not swapped

 Items compared: [1, 2] => not swapped

 Items compared: [2, 3] => not swapped

 Items compared: [3, 4] => not swapped

Output Array: [0 1 2 3 4 5 6 7 8 9]

Data Structures & Algorithms

249

Fibonacci series generates the subsequent number by adding two previous numbers.

Fibonacci series starts from two numbers − F0 & F1. The initial values of F0 & F1 can be

taken as 0, 1 or 1, 1 respectively.

Fibonacci series satisfies the following conditions −

Fn = Fn-1 + Fn-2

Hence, a Fibonacci series can look like this −

F8 = 0 1 1 2 3 5 8 13

or, this −

F8 = 1 1 2 3 5 8 13 21

For illustration purpose, Fibonacci of F8 is displayed as −

38. Fibonacci Series

Data Structures & Algorithms

250

Fibonacci Iterative Algorithm

First we try to draft the iterative algorithm for Fibonacci series.

Procedure Fibonacci(n)

 declare f0, f1, fib, loop

 set f0 to 0

 set f1 to 1

 display f0, f1

 for loop ← 1 to n

 fib ← f0 + f1

 f0 ← f1

 f1 ← fib

 display fib

 end for

end procedure

To know about the implementation of the above algorithm in C programming

language, click here.

Fibonacci Interactive Program in C

Fibonacci Program in C

RecursionDemo.c

#include <stdio.h>

int factorial(int n){

 //base case

 if(n == 0){

 return 1;

http://www.tutorialspoint.com/data_structures_algorithms/fibonacci_iterative_program_in_c.htm

Data Structures & Algorithms

251

}else {

 return n * factorial(n-1);

 }

}

int fibbonacci(int n){

 if(n == 0){

 return 0;

 }else if(n == 1){

 return 1;

 }else {

 return (fibbonacci(n-1) + fibbonacci(n-2));

 }

}

main(){

 int n = 5;

 int i;

 printf("Factorial of %d: %d\n" , n , factorial(n));

 printf("Fibbonacci of %d: " , n);

 for(i = 0;i<n;i++){

 printf("%d ",fibbonacci(i));

 }

}

If we compile and run the above program, it will produce the following result −

Factorial of 5: 120

Fibbonacci of 5: 0 1 1 2 3

Data Structures & Algorithms

252

Fibonacci Recursive Algorithm

Let us learn how to create a recursive algorithm Fibonacci series. The base criteria of
recursion.

START

Procedure Fibonacci(n)

 declare f0, f1, fib, loop

 set f0 to 0

 set f1 to 1

 display f0, f1

 for loop ← 1 to n

 fib ← f0 + f1

 f0 ← f1

 f1 ← fib

 display fib

 end for

END

To know about the implementation of the above algorithm in C programming

language, click here.

Fibonacci Recursive Program in C

Fibonacci Program in C

#include <stdio.h>

int factorial(int n){

 //base case

 if(n == 0){

 return 1;

http://www.tutorialspoint.com/data_structures_algorithms/fibonacci_recursive_program_in_c.htm

Data Structures & Algorithms

253

 }else {

 return n * factorial(n-1);

 }

}

int fibbonacci(int n){

 if(n == 0){

 return 0;

 }else if(n == 1){

 return 1;

 }else {

 return (fibbonacci(n-1) + fibbonacci(n-2));

 }

}

main(){

 int n = 5;

 int i;

 printf("Factorial of %d: %d\n" , n , factorial(n));

 printf("Fibbonacci of %d: " , n);

 for(i = 0;i<n;i++){

 printf("%d ",fibbonacci(i));

 }

}

If we compile and run the above program, it will produce the following result −

Factorial of 5: 120

Fibbonacci of 5: 0 1 1 2 3

